直线方程易错题
一 定点问题
1.若kR时,直线y-2=k(x-1)总通过一个定点,这个定点是( )
A(1,-2) B(-1,2) C(-2,1) D(1,2)
2.方程y=k(x-2),xR表示( )
A通过点(-2,0)的一切直线 B通过点(2,0)的一切直线
C通过点(2,0)且不垂直x轴的一切直线 D通过点(2,0)且除去x轴的一切直线
3.已知直线l的方程为:(2m-3)x+y-m+6=0,则对于任意的mR,直线l恒过定点_____
二 截距问题
1.直线mx+ny=1(mn≠0)与两坐标轴围成的面积是( )
1111|mn|mn22A B C 2mn D 2|mn|
2.过点P(2,3)并且在两坐标轴上截距相等的直线方程是:________
3.过点(5,2)且在x轴上截距是y轴上截距两倍的直线方程是:__________
4.过点(5,2),且在坐标轴上截距互为相反数的直线方程为( )
A x-y-3=0 B x-y+3=0或2x-5y=0 C x-y+3=0 D x-y-3=0或2x-5y=0
5.已知直线L与两坐标轴围成一个等腰直角三角形,且此三角形的面积为18,求直线L的方程。
三 最值问题
1.过点P(2,1)作直线l分别交x轴、y轴的正半轴于点A、B.求AOB的面积最小时直线l方程;
2. 若直线l过点(1,1),且与两坐标轴所围成的三角形的面积为2,则这样的直线l有( )条。 A 1 B 2 C 3 D 4
(变式题:若面积为5呢,面积为1呢?)
3.过点P(2,1) 作直线l分别交x轴、y轴于点A、B,求|PA|·|PB|取最小值时直线l的方程.
4.位于第一象限的点A在直线y=3x上,直线AB交x轴的正半轴于点C,已知点B(3,2),求△OAC面积的最小值,并求此时A点坐标
5.已知点M(1,3),N(5,-2),在x轴上取一点P,使得||PM|-|PN||最大,则P点坐标是( )
A (5,0) B (13,0) C (0,13) D (3.4,0)
变式:若使||PM|+|PN||最小呢?
练习.已知直线l1:x3y70,l2:ykxb与x轴y轴正半轴所围成的四边形有外接圆,则k ,b的取值范围是
四、对称问题
1.点A(4,5)关于直线l的对称点为B(-2,7),则l的方程为____________
2.点A(1,2)关于直线x-2y-2=0的对称点B的坐标是_________
3.已知M(a,b)与N关于x轴对称,点P与点N关于y轴对称,点Q与点P关于直线x+y=0对称,则点Q的坐标为( )
A (a,b) B (b,a) C(-a,-b) D (-b,-a)
4. 直线2xy40上有一点P,它与两定点A(4,1)、B(3,4)的距离之差最大,则P
点的坐标是___.
五、数形结合问题
22M(a,b)3x4y15ab1.已知点在直线上,则的最小值为
2. 已知方程xkx1有一正根而没有负根,求实数k的范围
3. 若直线l1:ykxk2与l2:y2x4的交点在第一象限,求k的取值范围. 4. 已知定点P2,1和直线l:13x12y250R
求证:不论取何值,点P到直线l的距离不大于13 122xPAPB2上,求取得最小值时P点的坐
5.已知点A(1,1),B(2,2),点P在直线标。
y22f(x)x2x2x4x8的最小值。 6.求函数
五、易错题
1.已知直线L的横截距为a,纵截距为b,斜率为k,则下列命题正确的是( )
xy11abA 直线与坐标轴围成的面积是2 B 直线的方程是:ab
bC 斜率k=a D 以上都不对
2.若直线L过点(1,2)且两截距相等,则直线L的斜率k是( )
A k=-1或k=2 B k=±1或k=2 C k=-1 D k=1或k=2
3. 下列四个命题中属于真命题的是 ( )
A、经过定点的直线都可以用方程yy0k(xx0)
B、经过任意两个不同点P1(x1,y1),P2(x2,y2)的直线都可以用(yy1)(x2x1)(xx1)(y2y1)表示
xy1abC、不经过原点的直线都可以用表示;
D、经过点A(0,b)的直线都可以用方程ykxb表示
ππ5π6ππxtan+y-1=0-74.直线的倾斜角是( )A 7 B 7 C 7 D 7
6.当是第四象限角时,直线xsiny1cos-a=0和直线xy1cos+b=0的位置关系是( ) A 平行 B 相交但不垂直 C 垂直 D与角有关
7.若直线L1:x+ay+6=0与直线L2:(a-2)x+3y+2a=0互相平行,则a的值为( )
A -1或3 B 1或3 C -1 D 以上都不对
9.下列命题:○1若有斜率的两条直线斜率不相等,则这两条直线不平行
○2若两条直线平行,则这两条直线的斜率相等
○3若两条直线都有斜率,且斜率相等,则这两条直线必定平行。 其中不正确的命题是________
10:若直线m被两平行线l1:xy10与l2:xy30所截得的线段的长为22,则m的倾斜角可以是: ①15 ②30 ③45 ④60 ⑤75
其中正确答案的序号是 .(写出所有正确答案的序号)
11. 已知点P(2,-1).
(1)求过点P且与原点距离为2的直线l的方程;
(2)求过点P且与原点距离最大的直线l的方程,最大距离是多少?
【举一反三】.已知△ABC中,A(1,1),B(4,2),C(m,m)(1<m<4),当△ABC的面积S最大时,求m的值.
因篇幅问题不能全部显示,请点此查看更多更全内容