一、六年级数学上册应用题解答题
1.果园里有500棵果树,其中苹果树和梨树占总数的 40%,其余的是桃树和杏树,桃树和杏树的比是 3:2。杏树有多少棵? 解析:120棵 【详解】
500×(1-40%)×[2÷(3+2)]=120(棵)
2.小方桌的边长是1米,把它的四边撑开就成了一张圆桌(如图),圆桌的面积比原来小方桌的面积多多少平方米(即求阴影部分的面积是多少)?
解析:57平方米 【解析】 【分析】
如图,连接正方形的对角线,把正方形平均分成了4个等腰直角三角形,且每一条直角边都是圆的半径;一个等腰直角三角形的面积就是正方形面积的,由于正方形的面积是1×1=1平方米,所以一个等腰直角三角形的面积就是平方米,即r2÷2=,可求得r2是,进而求得圆桌的面积,再求出面积差.
【详解】
连接正方形的对角线,把正方形平均分成了4个等腰直角三角形,如下图:
每一条直角边都是圆的半径; 正方形的面积:1×1=1(平方米)
小等腰直角三角形的面积就是平方米 即:r2÷2=,r2=; 圆桌的面积:3.14×r2 =3.14× =1.57(平方米); 1.57﹣1=0.57(平方米);
答:圆桌的面积比原来小方桌的面积多0.57平方米.
3.北街小学六年级上学期男生人数占总人数的53%。今年开学初转走了3名男生,又转入3名女生,这时女生占总人数的48%。北街小学六年级现在有多少名学生? 解析:300人 【分析】
今年开学初转走了3名男生,又转入3名女生,说明这时总人数不变;上学期女生占总人数的1-53%=47%,这时女生占总人数的48%,说明转入的3名女生占总人数的48%-47%=1%,据此求出六年级总人数。 【详解】
3÷[48%-(1-53%)] =3÷1% =300(人)
答:北街小学六年级现在有300名学生。 【点睛】
本题考查百分数,解答本题的关键是理解两个时间段六年级总人数未发生变化。 4.世界卫生组织推荐的成人标准体重的计算方法是:
男性:(身高80)0.7标准体重女性:(身高70)0.6标准体重 下表是体重的评价标准: 实际体重比标准体重轻(重)的百分比 等级 消瘦 偏瘦 正常 偏胖 肥胖 轻20%以上 轻11%~20% 轻10%~重10% 重11%~20% 重20%以上 (1)吴阿姨身高158cm,体重50kg。请你通过计算说明她的体重等级。 (2)杜叔叔身高170cm,体重至少减掉10kg才算是“正常”体重,杜叔叔现在的体重是多少kg? 解析:(1)正常 (2)79.3千克 【分析】
(1)吴阿姨是女性,根据(身高-70)×0.6=标准体重,先代入数据求出吴阿姨的标准体重,再求出吴阿姨的标准体重与其体重的差,用差除以标准体重,求出差占标准体重的百
分之几,从而得出结论;
(2)杜叔叔是男性,根据(身高-80)×0.7=标准体重,求出杜叔叔的标准体重,再加上10千克,就是杜叔叔现在的体重。 【详解】
(1)(158-70)×0.6 =88×0.6 =52.8(千克) (52.8-50)÷52.8 =2.8÷52.8 ≈5.3%
吴阿姨的体重比正常体重轻5.3%,属于正常范围。 答:吴阿姨的体重等级是正常。 (2)(170-80)×0.7 =90×0.7 =63(千克) 63×(1+10%)+10 =63×1.1+10 =69.3+10 =79.3(千克)
答:杜叔叔现在的体重是79.3千克。 【点睛】
解决本题先理解题目给出的标准体重的计算方法,然后根据已知数量代入公式计算。 5.某车间为了能高质量准时完成一批齿轮订单,对车间工人提前进行了加工齿轮效率的测试,经过统计测算,平均每个工人加工齿轮效率情况如图。
(1)加工小齿轮的效率比大齿轮高百分之几?
(2)已知这个车间有工人68人,1个大齿轮和3个小齿轮配为一套,为了使大小齿轮能成套出厂,如果你是车间主任,怎样安排这68名工人最合理?(请计算说明) 解析:(1)25%
(2)20名工人生产大齿轮,48名工人生产小齿轮,理由见详解
【分析】
(1)工作总量比=工作效率比,用工作总量差÷大齿轮工作总量即可;
(2)先求出每人每天加工小齿轮和大齿轮的个数,设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x),根据每人每天加工大齿轮的个数×人数=每人每天加工小齿轮的个数×人数÷3,列出方程求出加工小齿轮人数,总人数-加工小齿轮人数=加工大齿轮人数。 【详解】
(1)(50-40)÷40 =10÷40 =25%
答:加工小齿轮的效率比大齿轮高25%。 (2)每人每天加工小齿轮的个数:50÷5=10(个) 每人每天加工大齿轮的个数:40÷5=8(个)
解:设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x)。 8×(68-x)=10×x÷3 1632-24x=10x 34x=1632 x=48
加工大齿轮的人数是:68-x=68-48=20(人); 答: 20名工人生产大齿轮,48名工人生产小齿轮。 【点睛】
求比一个数多/少百分之几用表示单位“1”的量作除数,用方程解决问题关键是找到等量关系。
6.宝龙城市广场某商铺计划开展购物满千元即可参加飞镖投奖的活动,工作人员用一个半径60厘米的圆形木板制作了一个镖盘。(本题取3)
(1)如图1,这个镖盘的面积是________平方厘米。
(2)如图2,如果投中阴影部分获一等奖,投中空白部分获二等奖,如果没投中,可重新投掷,直至投中为止,求获一等奖的可能性大小是多少?(百分号前保留一位小数) (3)如图3,已知扇形AOB的圆心角是90,四边形ABCD是商家打算增设的一块“双倍奖金”区域,求获得1000元奖金的可能性大小是多少?(百分号前保留一位小数)
解析:(1)10800 (2)11.1% (3)0.9% 【分析】
(1)利用圆的面积公式,列式计算出镖盘的面积;
(2)先将阴影部分面积求出来,再利用除法求出获一等奖的可能性大小;
(3)将四边形和一等奖的重叠区域的面积求出来,再除以镖盘的面积,得到获得1000元奖金的可能性大小。 【详解】 (1)3×602 =3×3600
=10800(平方厘米)
所以,这个镖盘的面积是10800平方厘米。 (2)阴影部分面积: 3×(60-40)2 =3×400
=1200(平方厘米) 1200÷10800×100%≈11.1%
答:获一等奖的可能性大小是11.1%。 (3)1200÷4-20×20÷2 =300-200 =100(平方厘米) 100÷10800×100%≈0.9%
答:获得1000元奖金的可能性大小是0.9%。 【点睛】
本题考查了圆的面积计算和可能性的大小,熟练运用可能性大小的求解方法是解题的关键。
7.一玩具商从批发行购进两种大小不同的玩具熊100个,共花了3600元。在零售时,其中70个大号玩具熊以每个54元卖出。
(1)如果余下的小号玩具熊以每个15元售出,求玩具商在这次买卖中的盈利率。 (2)如果在大号玩具熊卖完后,每个小号玩具熊应定价多少元,才能使盈利率达到25%。 解析:(1)17.5%;(2)24元 【分析】
(1)根据单价×数量=总价分别求出大号玩具和小号玩具一共能卖多少钱,再用卖得的价格减去进价,就是利润;盈利率=利润÷成本×100%,据此解答;
(2)假设每个小号玩具熊应定价x元,根据(大号玩具和小号玩具一共卖的价钱-成本)÷成本×100%=25%列方程解答即可。 【详解】
(10070)(1)547015
=3780+450 =4230(元)
(4230-3600)÷3600×100% =630÷3600×100% =0.175×100% =17.5%
答:玩具商在这次买卖中的盈利率是17.5%。 (2)解:设小号玩具熊应定价x元。 100-70=30(个)
(54×70+30x-3600)÷3600×100%=25% 3780+30x-3600=3600×25% 180+30x=900 30x=900-180 30x=720 x=24
答:每个小号玩具熊应定价24元,才能使盈利率达到25%。 【点睛】
认真审题,看清条件和问题,解答此题用到的数量关系式是:盈利率=利润÷成本×100%。 8.六年级举行“小制作比赛”,六(1)班同学上交32件作品,六(2)班比六(1)班多交1,六(2)班交了多少件? 4解析:40件 【分析】
由于六(2)班比六(1)班多交【详解】 1321
45=32
41,所以可利用乘法求出六(2)班交了多少件。 4=40(件)
答:六(2)班交了40件。 【点睛】
本题考查了分数乘法的应用,已知一个数比另一个数多几分之几,求这个数,用乘法。 9.龙城超市上个星期售出甲、乙两种品牌的饮料箱数如下图.
(1)在这个星期中,两种品牌饮料的销售量在哪一天相差最大? (2)甲饮料周日的销售比周一多百分之几?
(3)甲饮料这个星期平均每天销售多少箱?乙饮料呢? 解析:(1)周二;(2)40%;(3)286箱, 270箱 【详解】
(1)从统计图中看出周二时,两种品牌饮料的销售量相差最大; (2)(350﹣250)÷250 =100÷250 =40%
答:甲饮料周日的销售比周一多40%。 (3)(350+250+270+200+230+320+385)÷7 =2005÷7 ≈286(箱)
(300+220+200+230+250+320+370)÷7 =1890÷7 =270(箱)
答:甲饮料这个星期平均每天销售约286箱,乙饮料这个星期平均每天销售270箱. 10.(1)某大酒店里有一种方圆两用餐桌(即外圆中方)。请你借助圆规等学具,选择相对合理数据画出这种方圆两用桌的桌面模形(要保留作图痕迹),并将正方形外的部分涂上阴影。(提示:在圆中画一个最大的正方形)
(2)如果圆桌的直径是1米,那么图中阴影部分的面积是多少平方米?
解析:(1)
(2)0.285平方米
【详解】 略
11.电子厂原有工人450人,其中女工占36%。因为生产需要又招进一批女工,这时女工人数占全厂工人总数的40%。又招进女工多少人? 解析:30人 【详解】
450×(1-36%)÷(1-40%)-450=30(人) 答:又招进女工30人。
12.某服装店将两件不同的衣服都以每件120元的价格出售,与进价相比,结果一件赚了20%,另一件亏了20%。服装店老板出售这两件衣服是赚了还是亏了?赚了(或亏了)多少元?
解析:亏了 亏了10元 【详解】
120-120÷(1+20%)=20(元) 120÷(1-20%)-120=30(元) 20<30 所以亏了 30-20=10(元)
答:服装店老板出售这两件衣服亏了,亏了10元。
13.一个疏菜大棚里种植菜椒的面积是450平方米,西红柿的种植面积比菜椒少20%,比黄瓜多12.5%,这个大棚里种植黄瓜的面积是多少平方米? 解析:450×(1–20%)÷(1+12.5%)=320(平方米) 【详解】 略
14.如图,第二个图形是由第一个图形连接三边中点而得到的,第三个图形是由第二个图形中间的一个三角形连接三边中点而得到的,以此类推……分别写出第二个图形、第三个图形和第四个图形中的三角形个数.如果第n个图形中的三角形个数为8057,n是多少?
解析:解:第一个图形中三角形个数:1个; 第二个图形中三角形个数:1×4+1=5(个); 第三个图形中三角形个数:2×4+1=9(个); 第四个图形中三角形个数:3×4+1=13(个); 第n个图形中三角形个数: (n-1)×4+1=(4n-3)(个) 4n-3=8057,n=2015. 答:n是第2015个图形. 【解析】
【详解】
由已知图形中三角形个数推出三角形个数与图形个数之间的数量关系式,再根据题意代入数据计算即可解答.
15.观察算式的规律:221221,322232,423243,523254,……。用含字母nn1,2,3,的式子表示规律:(________)。
2212(________)。
用规律计算:202192182172162152解析:n2−(n−1)2=n+n+1 210 【分析】
观察题目给出的算式,发现前一个数都比后一个数大1,而且前一个数的平方减去后一个数的平方最终等于前数加后数,由此可得到规律。 【详解】
(1)n2−(n−1)2=n+n+1 (2)202192182172162152=20+19+18+17+……+2+1 =20×10+10 =200+10 =210 【点睛】
本题考查学生的观察能力,找到规律然后利用规律是解题的关键。
16.海安某步行街要铺设一条人行道,人行道长400米,宽1.6米。现在用边长都是0.4米的红、黄两种正方形地砖铺设(如图是铺设的局部图示)。 (1)请帮忙算一算,铺设这条人行道一共需多少块地砖?(不计损耗) (2)铺设这条人行道一共需要多少块红色地砖?(不计损耗)
2212
解析:(1)4000块;(2)1000块 【分析】
(1)利用长方形面积公式:S=ab,计算人行道的面积,然后用人行道的面积除以每块地砖的面积,就是所需块数。
(2)根据图形的排列规律,每4×4=16(块)方砖中,有4块是红色的,求所需地砖块数包含几个16,再乘4,计算所需红色地砖的块数即可。 【详解】
(1)400×1.6÷(0.4×0.4)
=640÷0.16 =4000(块)
答:铺设这条人行道一共需4000块地砖。 (2)4000÷16×4 =250×4 =1000(块)
答:铺设这条人行道一共需要1000块红色地砖。 【点睛】
本题主要考查数与形结合的规律,关键是根据图示发现地砖排列的规律。 17.一张桌子可以坐6人,两张桌子拼起来可以坐10人,三张桌子拼起来可以坐14人.像这样共几张桌子拼起来可以坐50人?
解析:12张 【分析】
第一张桌子可以坐6人; 拼2张桌子可以坐6+4×1=10人; 拼3张桌子可以坐6+4×2=14人;
故n张桌子拼在一起可以坐6+4(n-1)=4n+2. 【详解】
解:设第n张桌子可以坐50人. 4n+2=50 n=12
答:像这样12张桌子拼起来可以坐50人.
18.佳惠超市按商品标价的80%进行促销。光明小学在此超市按促销价购买了200支钢笔,共付2040元。
(1)每支钢笔的标价是多少元?
(2)如果每支钢笔超市的进价是8.5元,问超市是在进价基础上加价百分之几将这200支钢笔卖给光明小学的? 解析:(1)12.75元 (2)20% 【分析】
(1)用总价除以钢笔数量,求出每支钢笔售价,再用每支钢笔的售价除以它占原标价的百分率,求出每支钢笔标价;
(2)先算出每支钢笔的售价,再用售价比进价多的部分除以进价,求出超市是在进价基础上加价百分之几将这200支钢笔卖给光明小学的。 【详解】
(1)2040÷200÷80%
=10.2÷80% =12.75(元)
答:每支钢笔的标价是12.75元。 (2)(2040÷200-8.5)÷8.5 =1.7÷8.5 =20%
答:超市是在进价基础上加价百分之二十将这200支钢笔卖给光明小学的。 【点睛】
本题考查百分数,解答本题的关键是理解按80%进行促销是指售价占标价的百分之八十。 19.张明和李丽进行口算比赛,两人在10分钟的时间里一共完成了230道题,张明比李丽多做了
1.他们两人各做了多少道题? 11解析:李丽做了110道,张明做了120道 【详解】 解法一 李丽:230÷(1+解法二
解:设李丽做了x道题. x+x(1+x=110 张明:110×(1+
1+1)=110(道) 张明:230−110=120(道) 111)=230 111)=120(道) 112,剩下的由甲独做3答:李丽做了110道,张明做了120道.
20.甲、乙两人共同完成一项工程。甲、乙一起做6天完成了工程的
8天完成,按完成的工作量分配工资,甲获得工资7000元,乙应得工资多少元? 解析:5000元 【分析】
把一项工程看作单位“1”,根据工作总量÷工作时间=工作效率,可求出甲的工作效率,再根据具体时间可求出甲6天的工作总量,进而求得乙的工作总量。用甲的工资除以甲的工作总量即可求出完成工程总工资,进而求得乙的工资。 【详解】
2甲的工作效率为:(1)8
311= 38=
1 24甲6天完成的工作量:乙的工作总量:
116 244215-= 3412甲的工作总量:1-700057= 1212770005000(元) 12答:乙应得工资5000元。 【点睛】
本题考查工程问题,把一项工程看作单位“1”是解题的关键。
21.求实小学原来男、女生人数之比为16:13,这学期又转来几名女生,这样男、女生人数之比为6:5,这时男、女生人数共有880人,转来的女生有多少人? 解析:10人 【详解】
880÷(6+5)=80(人),80×6=480(人),480÷16=30(人),30×13=390(人),80×5-390=10(人). 答:转来的女生有10人.
22.操场上有108名同学在锻炼身体,其中女生占,后来又来了几名女生,这时女生人数占
293,后来又来了几名女生? 10解析:12名 【分析】
原来108名同学看作单位”1”,根据乘法求出原来男生的人数,再把后来一共的同学看作单位“1“,则原来男生人数占现在人数的(13),根据已知一个数的几分之几是多少求这个数10用除法,求出现在的学生数,再进一步得出结论。 【详解】 原来男生人数:
2108(1)
91087 984(名)
后来学生总数:
84(13) 10847 10120(名)
12010812(名)
答:后来又来了12名女生。
【点评】
明确这一过程中男生人数没有变,根据前后男生占总人数的分率列出等量关系式是完成本题的关键。
23.甲、乙两车同时从A、B两地出发,相向而行,经过5小时相遇,相遇后两车又行驶了3小时,这时甲车离B地还有230千米,乙车离A地还有160千米,求A、B两地的距离是多少千米? 解析:975千米 【分析】
1根据题意,甲、乙两车5小时行完全程,则两车每小时共行全程的。相遇后两车又行驶
53了3小时,行驶了全程的。把全程看作单位“1”,则两车剩下的路程共占全程的(1-
533),用两车剩下的路程之和除以(1-)即可求出全程。 55【详解】
13×3= 553(230+160)÷(1-)
5=390÷
2 5=975(千米)
答:A、B两地的距离是975千米。 【点睛】
1已知一个数的几分之几是多少,求这个数,用除法计算。明确“两车每小时共行全程的”
53和“两车剩下的路程共占全程的(1-)”是解题的关键。
524.小红和小兰都积攒了一些零用钱,她们所积攒的零用钱的比是5:3.在“支援灾区,奉献爱心”的捐款活动中,小红捐了26元,小兰捐了10元,这时她们剩下的钱数相等.小红原来有多少钱? 解析:40元 【分析】
因为她们剩下的钱数相等,所以小红比小芳多捐的钱数等于原来小红比小芳多攒的钱数,求出1份的钱数,即可求出小红原来的钱数. 【详解】 26﹣10=16(元) 16÷(5﹣3)=8(元) 8×5=40(元);
或:(26﹣10)÷(5﹣3)×5 =16÷2×5,
=8×5, =40(元);
答:小红原来有40元钱.
25.公园里有一个圆形花圃(如图),直径20米,花圃中的绿地面积是254.34平方米,花圃中石子路的宽度是多少米?<5分>
解析:1米 【详解】
254.34÷3.14=81(平方米) 因为9×9=81
所以绿地的半径是9米。 <2分> 20÷2-9=1(米) <3分> 答:花圃中石子路的宽度是1米。
考察学生对圆环面积以及其内圆半径和外圆半径之间关系的理解,从而找到正确的突破口进行解答。
26.三角形ABC的三条边都是6厘米,高AH为5.2厘米,分别以A、B、C三点为圆心,6厘米长为半径画弧,求这三段弧所围成的图形的面积。(取3.14)
解析:32平方厘米 【分析】
根据题干三角形ABC是等边三角形,所以每个角的度数都是60°,那么图中就出现了3个半径为6厘米,圆心角为60°的扇形;这三段弧所围成的图形的面积=三个扇形的面积之和﹣2个等边三角形的面积,由此利用扇形的面积公式和三角形的面积公式即可解决问题。 【详解】
一个小扇形的面积是: 60×3.14×62 360=
60×3.14×36 360=18.84(平方厘米) 等边三角形的面积为: 6×5.2÷2=15.6(平方厘米) 这三段弧所围成的图形的面积是: 18.84×3﹣15.6×2 =56.52﹣31.2 =25.32(平方厘米)
答:这三段弧所围成的图形的面积是25.32平方厘米。 【点睛】
此题考查了扇形的面积公式与三角形的面积公式的灵活应用,根据题干,将这个组合图形的面积问题转化成求扇形和三角形的面积问题是解决本题的关键。 27.水果店运进一批桂园,第一天售出批桂园有多少千克? 解析:180千克 【详解】 36÷(1-
13,第二天售出余下的5,还剩36千克没有卖,这2113-×)=180(千克) 22512路程时,你油箱的油已由原来的满箱到只有箱。问:是否能用这些3428.当你开车开到
油到达终点?请你尝试说说理由。 解析:不能 【详解】
113 (箱) 4422(1)2 33332 (箱) 4831 84
答:不能用这些油到达终点
1129.涛涛读一本故事书,第一天读了这本书的,第二天读了这本书的,这时还剩95页
65没有读。这本故事书共有多少页? 解析:150页 【分析】
第一天读了这本书的
11,第二天读了这本书的,都是以这本书为单位 “1”,那么还剩下这
56本书的
19,量率对应求 单位“1”。 30【详解】 11191 65309519150(页) 30答:这本故事书共有150页。 【点睛】
本题考查的是分数除法应用题,在用量率对应求单位“1”时,量和分率一定要相互对应。 30.一个周长为12.56厘米的圆在长方形内滚动一周后回到初始位置(如下图所示),圆心所经过的路程是40厘米,已知图中长方形的长和宽之比是5:2,这个长方形的面积是多少平方厘米?
解析:160平方厘米 【详解】
圆的半径:12.56÷3.14÷2=2(厘米),
设长方形的长和宽分别为5a厘米和2a厘米,则圆心经过的路程长是(5a-2×2)厘米,宽是(2a-2×2)厘米; (5a-2×2+2a-2×2)×2=40 7a-8=20 7a=28 a=4
长方形的面积为: (5×4)×(2×4) =20×8
=160(平方厘米)
答:这个长方形的面积是160平方厘米. 【点睛】
解答此题关键是明确圆心经过的路径是一个长方形,长和宽分别比原长方形少两个半径. 31.小明观察到某赛车场赛道和学校操场跑道形状一样,于是测量了相关数据如下:直道的长度85.96m,半圆形跑道的直径72.6m。某型号赛车左、右轮的距离是2m,转弯时,外侧的轮子比内侧的轮子要多行一些路。当该赛车在上述赛道上跑一圈时,外轮比内轮多行多少米?
解析:56米 【分析】
直道外轮和内轮所行距离一样,用外轮弯道距离-内轮弯道距离即可,即求出两个圆的直径,外圆周长-内圆周长。 【详解】 72.6+2×2 =72.6+4 =76.6(米) 3.14×76.6-3.14×72.6 =3.14×4 =12.56(米)
答:外轮比内轮多行12.56米。 【点睛】
关键是理解题意,圆的周长=πd。
32.一杯盐水,第一次加入一定量的水后,盐占盐水的20%;第二次又加入同样多的水,盐水的含盐百分比变为15%;
(1)第二次又加入同样多的水,盐水的含盐百分比变为15%,则盐:盐水=(________:________)。
(2)若第三次再加入同样多的水,含盐率为百分之几? 解析:(1)3;20
(2)解:将原来有盐水看成单位1,设第一次加入水x,则第一次加入水x后,盐占盐水的20%,此时含盐(1+x)×20%。
同理,第二次加入同样多的水x,含盐(1+x+x)×15%。
因为盐的量没有发生变化,所以(1+x)×20%=(1+x+x)×15%,x=0.5
则第三次再加入同样多的水,含盐率:(1+0.5)×20%÷(1+0.5×3)=0.12=12%。 【详解】
(1)盐水的含盐率=盐的质量÷(盐的质量+水的质量),所以将含盐率写成分数的形式,然后化成比即可;
(2)可以用分数作答,即设第一次加入水x,把原来有盐水看成单位“1”,那么第一次加水后,盐的质量=(原来盐水的质量+水的质量)×第一次加水后的含盐率,第二次加水后,盐的质量=(原来盐水的质量+水的质量+水的质量)×第二次加水后的含盐率,由于整个过程中,盐的质量没有发生变化,所以第一次加水后盐的质量=第二次加水后盐的质量,据此可以解得x的值,那么第三次再加入同样多的水后的含盐率=盐的质量÷(原来盐水的质量+每次加入水的质量×3),据此作答即可。
33.有一座四层楼房,每个窗户的4块玻璃分别涂上红色和白色,每个窗户代表一个数字,每层楼有三个窗户,由左向右表示一个三位数,四个楼层表示的三位数有:791、275、362、612。问:第二层楼表示哪个三位数?
解析:612 【分析】
给出的四个数中362和612的个位数字相同,第二和第四层右边窗户符号也相同,可以肯定这两层分别代表362和612。这两个数中又有数字6是一样的,对照第二层和第四层的窗户,可以确定第二层代表612。 【详解】
第二层代表612,因为362和612的个位数字相同,又有数字6是一样的,对照第二层和第四层的窗户,所以第二层代表612。 【点睛】
本题考查数与形,解答本题的关键是根据数字的特征找到图形规律。 34.观察下面点阵中的规律,回答下面的问题:
①方框内的点阵包含了( )个点。
②照这样的规律,第12个点阵中应包含多少个点? 我是这样想的:
解析:①13; ②34个;我是这样想的:竖直方向的点与序列号相同,两个斜线上的点数比序列号少1,所以第12个点阵中应包含12+11+11=34(个)。 【分析】
①第(1)个点阵有1个点,第(2)点阵有4个点,第(3)个点阵有7个点,第(4)个点阵有10个点,从第(2)开始,每一个点阵比前一个多3个点,则第(5)有10+3=13个点。
②竖直方向的点与序列号相同,两个斜线上的点数比序列号少1,所以第12个点阵中应包含12+11+11=34 (个) 【详解】
①方框内的点阵包含了13个点。
②12+11+11=34 (个);我是这样想的:竖直方向的点与序列号相同,两个斜线上的点数比序列号少1,所以第12个点阵中应包含12+11+11=34 (个)。 【点睛】
本题主要考查学生的观察和分析问题的能力。
35.如图所示,两个圆周只有一个公共点A,大圆直径AB为48厘米,小圆直径AC为30厘米,甲、乙两虫同时从A点出发,甲虫以每秒0.5厘米的速度顺时针沿大圆圆周爬行,乙虫以同样速度顺时针沿小圆圆周爬行(本题取3)
(1)问乙虫第一次爬回到A点时,需要多少秒?
(2)两虫沿各自圆周不间断地反复爬行,能否出现这样的情况:乙虫爬回到A点时甲虫恰好爬到B点?如果可能,求此时乙虫至少爬了几圈;如果不可能,请说明理由。 解析:(1)180秒 (2)能;乙虫至少爬了4圈 【分析】
(1)当乙虫第一次爬到A点时,正好爬了一个小圆的周长,再根据路程÷速度=时间解答即可;
(2)根据题意,计算出小圆周长与大圆周长的一半的最小公倍数,然后再用最小公倍数除以小圆的圆周长就是乙虫爬行的圈数,列式解答即可得到答案。 【详解】
(1)C小圆d小圆33090cm
900.5180(秒)
答:乙虫第一次爬回到A点时,需要180秒。 (2)能
11C大半圆d大圆34872cm
22C小圆d小圆33090cm
90与72的最小公倍数是360 360904(圈)
答:此时乙虫至少爬了4圈。 【点睛】
解答此题的关键是确定小圆的周长和弧AB的长,然后再进行计算即可。
36.某通信公司有两种不同的通话费计费方式,第一种:每月付20元月租费,然后每分钟
收通话费0.18元;第二种:不收月租费,每分钟收通话费0.28元。 ①如果每月通话300分钟,哪一种计费方式更便宜? ②每月通话多少分钟,两种计费方式的通话费正好相等? 解析:①如果每月通话300分钟,第一种通话计费方式便宜 ②每月通话200分钟,两种计费方式的通话费正好相等 【分析】
(1)如果每月通话300分钟,按第一种计费方式应付费=月租费+每分钟通话费×通话时间;再计算出第二种计费方式应交的话费,再比较;
(3)设出通话时间,根据等量关系式:20+通话时间×0. 18=0. 28×通话时间,列方程解答即可。 【详解】 ①20+0.18×300 =20+54 =74(元) 0.28×300=84(元) 84>74
答:如果每月通话300分钟,第一种通话计费方式便宜。 ②解:设每月通话x分钟,两种计费方式的通话费正好相等
200.18x0.28x 0.1x20 x200.1 x200
答:每月通话200分钟,两种计费方式的通话费正好相等 【点睛】
此题应通过分析,找出正确的等量关系,进而列式计算得出问题结论。 37.李师傅3天做完一批零件,第一天做的是第二天的
,第三天做的是第二天的,已
知第三天比第一天多做30个零件,这批零件一共有多少个? 解析:174个 【详解】 30÷(﹣=30÷×=60×
)×(
+1+)
=174(个)
答:这批零件一共有174个。
38.弹簧秤在正常的范围内称物体,称2千克的物体,弹簧全长为12.5cm,称8千克的物体,弹簧全长为14cm。那么当弹簧全长为15cm时,所称物体的质量为多少千克?
解析:12千克 【解析】 【详解】
解:设弹簧原长为xcm 2:(12.5-x)=8:(14-x) 解得x=12
设所称物体的质量为y千克 2:(12.5-12)=y:(15-12) 解得y=12
39.水果店运来一批橘子,第一天卖出总数的40%,第二天卖出140千克,剩下的与卖出的重量比是1:3,这批橘子重多少千克? 解析:400千克 【详解】
1+3=4, 140÷(1﹣40%﹣ =140÷0.35, =400(千克); 答:这批橘子重400千克 40.
为了绿化校园,某校购买了一批树苗,由四、五、六三个年级共同种植,五年级种植了这批树苗的多2棵,六年级种植了这批树苗的少1棵,四年级种植了剩下的10棵.五、六年级分别种植了多少棵? 解析:五年级:24棵 六年级:32棵 【详解】
(10−1+2)÷(1−−) =66棵
66×+2=24(棵) 66×−1=32(棵)
答:五年级种植了24棵,六年级种植了32棵.
),
因篇幅问题不能全部显示,请点此查看更多更全内容