热门搜索 :
考研考公
您的当前位置:首页正文

The evolution of the high energy tail in the quiescent spectrum of the soft X-ray transient

来源:伴沃教育
DRAFT

VERSION

FEBRUARY2,2008

APreprinttypesetusingLTEXstyleemulateapjv.11/12/01

THEEVOLUTIONOFTHEHIGHENERGYTAILINTHEQUIESCENTSPECTRUMOFTHESOFT

X–RAYTRANSIENTAQLX-1

S.CAMPANA1,L.STELLA2

DraftversionFebruary2,2008

arXiv:astro-ph/0307218v1 10 Jul 2003ABSTRACT

AmoderatelevelofvariabilityhasbeendetectedinthequiescentluminosityofseveralneutronstarsoftX–raytransients.SpectralvariabilitywasfirstrevealedbyChandraobservationsofAqlX-1inthefourmonthsthatfollowedthe2000X–rayoutburst.ByadoptingthecanonicalmodelforquiescentspectrumofsoftX–raytransients,i.e.anabsorbedneutronstaratmospheremodelplusapowerlawtail,Rutledgeetal.(2002a)concludedthattheobservedspectralvariationscanbeascribedtotemperaturevariationsoftheneutronstaratmosphere.Theseresultscanhardlybereconciledwiththeneutronstarcoolingthatisexpectedtotakeplaceinbetweenoutbursts(afterdeepcrustalheatingintheaccretionphase).HerewereanalysetheChandraspectraofAqlX-1,togetherwithalongBeppoSAXobservationinthesameperiod,andproposeadifferentinterpretationofthespectralvariability:thatthisisduetocorrelatedvariationsofthepowerlawcomponentandthecolumndensity(>5,apartofwhichmightbeintrinsictothesource),whilethetemperatureandfluxoftheneutronstaratmosphericcomponentremainedunchanged.Thislendssupporttotheideathatthepowerlawcomponentarisesfromemissionattheshockbetweenaradiopulsarwindandinflowingmatterfromthecompanionstar.Subjectheadings:accretion,accretiondisks—binaries:close—star:individual(AqlX-1)—stars:neutron

1.INTRODUCTION

ThelargeluminosityswingoftransientX–raybinariesal-lowsthesamplingavarietyofphysicalconditionsthatarein-accessibletoaccretingcompactobjectsinpersistentsources.TheverylowluminositythatcharacterisesthequiescentstateofneutronstarsoftX–raytransients,SXRTs,(LX∼1032−1033ergs−1)opensupthepossibilityofstudyingtheseold,fastspinningneutronstarsindifferentandyetunexploredregimessuchasaccretionontotheneutronstarmagnetosphere(propeller),resumedmillisecondradiopulsaractivity,and/orlow-levelatmosphericemissionfromthecoolingoftheneu-tronstarinbetweentheaccretionintervalsoftheoutbursts(e.g.Campanaetal.1998a;Brownetal.1998;Rutledgeetal.2002b).

InrecentyearsthequiescentpropertiesofahandfulSXRTshavebeenstudiedinsomedetail.ThemainoutcomeoftheseinvestigationsisthatthequiescentX–rayspectraofSXRTsdis-playasoftcomponentplusahard(power-law)componentcon-tributingacomparablefluxinthe0.5–10keVband(Campana2001;Bildsten&Rutledge2000;Wijnands2001).Thesoftcomponenthasbeenfrequentlymodelledwithablackbodymodelof0.1–0.3keVtemperatureandfewkmradius.Espe-ciallypromisingistheideathatthesoftcomponentofSXRTsmaybeproducedfromthecoolingoftheneutronstarheatedduringtherepeatedoutbursts(vanParadijsetal.1987;Stellaetal.1994;Campanaetal1998a).Thetheoryofdeepcrustalheatingbypycnonuclearreactionscompareswellwiththeob-servations(Brownetal.1998;Campanaetal.1998a;Rut-ledgeetal.1999;Colpietal.2001).Inparticular,Rutledgeetal.(1999)fittedneutronstaratmosphericmodelstothesoftcomponentofquiescentspectraofSXRTsandderivedslightlysmallertemperatures(0.1–0.3keV)andlargerradii(10–15km,consistentwiththeneutronstarradius)thanthoseinferredfromsimpleblackbodyfits.

1

Observationally,thehardcomponentiswelldescribedbyapowerlawtail.InthequiescentspectrumofAqlX-1andCenX-4observedbyASCAandBeppoSAXthiscomponentissta-tisticallysignificant(Asaietal.1996,1998;Campanaetal.1998b,2000)withphotonindexinthe1–2range.Thesamepowerlawisneeded(evenifnotstatisticallysignificant)intheanalysisofChandradatainordertoachieveanemittingradiusofthecoolingcomponentconsistentwiththeneutronstarra-dius(otherwisetheinferredradiuswouldbesmaller;Rutledgeetal.2001a,2001b).Thenatureofthishardcomponentisstilluncertain.ModelsrangefromComptonizationtoAdvec-tion/ConvectionDominateAccretionFlow(ADAF/CDAF)toshockemissionfromtheneutronstarthatresumeditsradiopul-saractivityinquiescence.Thelattermodelenvisagesasitua-tionsimilartothatoftheeclipsingradiopulsarPSRB1259–63orofthe‘blackwidow’pulsarPSRB1957+20:ashockattheboundarybetweentherelativisticMHDwindfromtheradiopulsarandthematteroutflowingfromthecompanionstar(Ta-vani&Arons1997;Tavani&Brookshaw1991;Campanaetal.1998a).ForthemodeltoexplaintheobservedluminosityinthehardpowerlawcomponentofquiescentSXRTs,somefewpercentofthepulsarspin-downluminositymustbecon-vertedintoshockemission3.Theshockemissionmodelpre-dictssynchrotronemissionwithpowerlawphotonindexesinthe1.5–2rangeandextendingoverawiderangeoffrequen-cies.IndirectindicationsforthepresenceofthisemissionalsofromUVobservationsofCenX-4withHSTrevealingaflatspectrum(i.e.Γ∼2)whichmatcheswelltheextrapolatedX–raypowerlawcomponent(McClintock&Remillard2000).Powerlawindexesoutsidetheaboverangeareindicationsofstrong(inverse-Compton)cooling.

Inawaysimilartowhatisroutinelydoneintheoptical,apromisingtooltoprobetheX–rayemittingregionsisthrougharougheclipsemappingtechnique(e.g.Horne1985).Chandra

INAF-OsservatorioAstronomicodiBrera,ViaBianchi46,I–23807Merate(Lc),Italy

2INAF-OsservatorioAstronomicodiRoma,ViaFrascati33,I–00040MonteporzioCatone(Roma),Italy

3OngoingdeepsearchesintheradiobandhavenotyetrevealedanysteadyorpulsedemissionfromquiescentSXRTs(Burgayetal.2003);howeverfree-freeabsorptionduetomatterinthebinarysystemmightbeanimportantlimitingfactorinthesesearches(Stellaetal.1994;Burgayetal.2003).

1

2

observationsoftheeclipsingSXRT4U2129+47werethefirsttoexploitthepotentialofthistechniquebylookingattheex-tensionoftheemittingregionsthrougheclipses(Nowak,Heinz&Begelman2002).Duringeclipsesthesoftcomponentgetstotallyeclipsedwhereasthehardcomponentistoofainttoberevealed.Thisimpliesanupperlimitontheemissionsizeof∼<

10%theorbitalseparation(Nowaketal.2002).Theinclina-tionofAqlX-1hasbeenestimated,fromellipsoidalvariationsintheRandIbandlightcurves,tobegreaterthan36degrees(Welsh,Robinson&Young2000).

InthispaperweinvestigateinmoredetailthequiescentspectrumofoneofthebeststudiedSXRTsources:AqlX-1.WetakeadvantageoffourChandraexposures(Rutledgeetal.2002a)andone76kslong(unpublished)BeppoSAXexposure.AllthesedatawerecollectedjustaftertheNovem-ber2000outburst.BasedontheChandradataRutledgeetal.(2002a)claimedthatthesoftcomponentdecreasedby∼50%overthreemonths,thenincreasedby∼35%inonemonth,andthenremainedconstant(<6%change)overthelastmonth.Thevariabilityoftheseobservationswasascribedtoanintrin-sicvariabilityofthesoftcomponenthintingtoaccretionontotheneutronstarsurface.HerewediscussinmoredetailtheseobservationstogetherwiththeBeppoSAXlongexposure,prob-ingtheshockemissionmodel.

InSection2wedealwiththedata.InSection3wedescribethespectralfittingandrelatedresults.Discussionandconclu-sionsarereportedinSection4.

2.DATA

2.1.Chandra

AqlX-1wasobservedbyChandraaftertheNovember2000outburstonfouroccasions(seeTable1).Observationswerecarriedoutwiththebackside-illuminatedACIS-Sdetector(S3)atanoff-axispositionof4′andlimitedread-outareaof1/8(achievingatimeresolutionof0.44s)inordertolimitprob-lemsconnectedtopile-up(seeRutledgeetal.2002a).Asex-presslyrequired,AqlX-1fellonthesamephysicalpixelsinor-dertoavoidproblemswiththeCCDsquantumefficiency(seeRutledgeetal.2002a).FortheanalysisweuseCIAO2.2.1withCALDB2.15(thesearelaterversionsthanwhatusedbyRutledgeetal.2002a).Inallobservations,′′weextractedthesourcecountsfromanelliptical4.5′′×3regioncenteredonsourcewithapositionanglematchingthesource.Backgroundphotonswereextracted′′fromanannularregionwithinnerandouterradiiof10and20′′,respectively.Datawereextracted,usingpsextract,intopulse-invariant(PI)spectra.Wegroupedallthespectratohave(atleast)30photonsperchannel.Wealsocorrectedalltheancillary(arf)fileswiththerecentlyre-leasedcorrarftooltoaccountforthecontinuousdegradationintheACISCCD’squantumefficiency.

2.2.BeppoSAX

WeanalyseddatafromthetwoimaginginstrumentsonboardtheBeppoSAXsatellite:theLowEnergyConcentratorSpec-trometer(LECS;0.1–10keV,Parmaretal.1997)andtheMediumEnergyConcentratorSpectrometer(MECS;1.6–10.5keV,Boellaetal.1997).Non-imaginginstrumentsprovidedonlyupperlimits.OnlytwoofthethreeMECSunitswereop-eratingatthetimeoftheobservations.LECSdatawerecol-lectedonlyduringsatellitenight-timeresultinginshorterexpo-suretimes.ForasummaryoftheobservationsseeTable1.Theobservationtookplaceon2001April14,observingAqlX-1for

anetexposuretimeof76kswiththeMECSand30ksfortheLECS.

ProductswereextractedusingtheFTOOLSpackage(v.5.1).LECSandMECSeventswereextractedfromacircleof4′ra-dius.Thebackgroundwassubtractedusingspectrafromblankskyfilesatthesamedetectorcoordinates(aftercheckingthatthebackgroundoftheobservationwascomparable).Were-binnedtheLECSandMECSspectrainordertohave80countsperspectralbineach.

3.OVERALLSPECTRALANALYSIS

3.1.Spectralmodel

Rutledgeetal.(2002a)analysedthefourChandraspectratogether.Spectraaredifferent,e.g.ahardpower-lawtailhasbeendetectedonlyduringtwoofthefourobservations.Toac-countforthesedifferencesRutledgeetal.(2002a)consideredamodelmadebyanabsorbedatmospheremodelplusapowerlawandletvarysingleparameters(fixedalltheother)tryingtoaccountforthevariations.Theyfoundthatdifferencesinthespectracannotbeexplainedasentirelyduetoeitherachangingpowerlawfluxand/orindexortoavariablecolumndensity.Onthecontrary,differencescanbeacceptably(intermsofχ2statistics)explainedasentirelyduetoa(nonmonotonic)tem-peraturevariabilityofthethermalemissioncomponent.Thesevariationscannotbeexplainedwithinthedeepcrustalheatingmodelandtheauthorssuggestedthatthesemightoriginatefromquiescentaccretionontotheneutronstarsurface.

Asdiscussedintheintroduction,wewanttotestherethehy-pothesisthatquiescentemissionofSXRTs(andAqlX-1inpar-ticular)areproducedbyasoftthermalcomponent,likelyaris-ingfromcoolingoftheneutronstar,plusapowerlawhardtail,arisingfromshockemissionduetoanactivemillisecondpulsar.Intheory,thesoftcomponentissteadyonrelativelyshorttimewhereasthehardcomponentcanlikelyvarydependingonthegeometryanddensitytheoutflowingmatter.Hydrodynamicalsimulations(Brookshaw&Tavani1993)aswellasradioobser-vationsofmillisecondradiopulsars(MSPs)inbinarysystemswithasizeablemasstransfershowcomplexgeometriesand,moreimportantly,variationsfromoneorbitalcycletoanother.TheexampleoftherecentlydiscoveredMSPPSRJ1740–5340(D’Amicoetal.2001;Ferrarioetal.2001)isenlighting.Thisisa3.7msMSPorbitingevery32.5hramainsequencecom-panion.ThesourceislocatedintheglobularclusterNGC6397at2.5kpc.Theradiopulsargetspartiallyandtotallyeclipsedoverawiderangeoforbitalphases.ItemitsX–raysasob-servedbyChandra(Grindlayetal.2001)likelyarisingfromshockemission.Astestifiedbythissource,theMSPiseclipsedforlargepartoftheorbitandvariationsfromorbittoorbitareseen.

ThiscasemotivatesustoconsideraspectralmodelforfittingthequiescentX–rayspectraofAqlX-1madebyasoftthermalcomponentfromtheentireneutronstar,avariablepowerlawcomponent(thestrengthofwhichdependsontheinteractionwiththesurroundingmatter)andavariablecolumndensityduetovariationsintrinsictothesource(overafixedinterstellarcol-umndensity).

3.2.Spectralanalysis

SpectralanalysiswascarriedoutwiththeXSPECsoftware(v.11.2.0).Thespectralmodelweadoptedconsistofa(fixed)

3

coolingspectrum(weuseherethehydrogenatmospheremodelbyG¨ansicke,Braje&Romani2002,hyd

4

isconsistentwiththeentiredataset(χ2red=1.00,for109d.o.f.andwithanullhypothesisprobabilityof49.0%).FittingthesamedatasetwiththebestfitmodelbyRutledgeetal.(2002a)withtheadditionoftheBeppoSAXdata,weobtainaslightlyworsefit(χ2red=1.17,for113d.o.f.andwithanullhypoth-esisprobabilityof11.1%).AnequallygoodfitisprovidedbyaneutronstaratmosphereplusaComptonizationcomponent(COMPTT).Thismodelprovidesahighdegreeoffreedomwithaχ2red=0.99fit(for104d.o.f.andwithanullhypothesisprobabilityof50.5%)obtainedfixingthesoftWientemperaturetoatmospheretemperatureandtheplasmatemperaturekeptthesameinalltheobservations.Weconcludethatthescenariopro-posedis(atleast)equallywellconsistentwiththedata,mean-ingthatashockemissionscenariocanaccountforthespectralvariabilityobservedinAqlX-1.WealsonotethatRutledgeetal.(2002)found32%(rms)variabilityinobservationC4.Intheircasethepowerlawcomponentcontributedonly12%oftheflux.Fromourfitthepowerlawcomponentcontributesto38%ofthetotalflux,soitcaninprincipleaccountforallofthe

short-termvariability.

Despitethelownumberofpoints,spectralparametersde-rivedforthepowerlawindexshowsomecorrelationwiththecolumndensity(interpretedasameasureofthevariablemassaroundthesystem,overafixedinterstellaramount)aswellaswiththepowerlawflux.Thiscorrelationmightbeexpectedintheshockemissionscenario(Tavani&Arons1997).Whatisnowexpectedisthelargevalueofthepowerlawindexinthelastobservations.Thismightthenprovideanindicationofadifferentregimeinthesystem,possiblyunderlyingalargerin-verseComptoncooling.Thehardpartofthespectrumisinfactconsistentalsowithathermalbremsstrahlungspectrum.

Furtherobservationscanshedlightonthisnewinterest-ingfield,namelyvariabilityinthequiescentphaseofSXRTs,whichuptonowhasbeenoftenunconsidered.

WethankananonymousrefereeandG.Ghiselliniforusefulcomments.

REFERENCES

Asai,K.,etal.1996,PASJ48257Asai,K.,etal.1998,PASJ50611

Bildsten,L.,Chakrabarty,D.2001,ApJ557292

Bildsten,L.,Rutledge,R.2000,in“TheNeutronStar-BlackHoleConnection”(NATOASIELOUNDA1999),eds.C.Kouveliotouetal.(astro-ph/0005364)

Boella,G.,etal.1997,A&AS122327

Brookshaw,L.,Tavani,M.1993,ApJ410719

Brown,E.F.,Bildsten,L.,Rutledge,R.E.1998,ApJ504L95Burgay,M.,etal.,2003,ApJ589902

Campana,S.2001,intheproceedingsoftheBolognaconferenceon“X–rayAstronomy1999:StellarEndpoints,AGN,andtheDiffuseX-rayBackground”,eds.N.E.White,G.Malaguti,G.G.C.Palumbo,A.I.P.Conf.Proc.59963

Campana,S.,etal.1997,A&A324941Campana,S.,etal.1998a,A&ARev.8279Campana,S.,etal.1998b,ApJ499L65Campana,S.,etal.2000,A&A358583

Colpi,M.,Geppert,U.,Page,D.,Possenti,A.2001,ApJ,548,L175D’Amico,N.,etal.2001,ApJ,561,L89

Ferrario,F.,Possenti,A.,D’Amico,N.,Sabbi,E.2001,ApJ,561,L93

Fiore,F.Guainazzi,M.&Grandi,P.1999,CookbookforBeppoSAXNFIspectralanalysis,ftp://ftp.asdc.asi.it/pub/sax/doc/softwarev1.2.ps.gzG¨ansicke,B.T.,Braje,T.M.,Romani,R.W.2002,A&A3861001

Grindlay,J.,Heinke,C.O.,Edmonds,P.D.,Murray,S.S.,Cool,A.M.2001,ApJ,563,L53

Horne,K.1985,MNRAS213129

Kong,A.K.H.,etal.2002,ApJ570277

McClintock,J.E.,Remillard,R.A.2000,ApJ531956Nowak,M.,Heinz,S.,Begelman,M.2002,ApJ573778Parmar,A.N.,etal.1997,A&AS122309Piro,L.,etal.2001,ApJ558442

Rutledge,R.E.,Bildsten,L.,Brown,E.F.,Pavlov,G.G.,Zavlin,V.E.,1999ApJS124265

Rutledge,R.E.,Bildsten,L.,Brown,E.F.,Pavlov,G.G.,Zavlin,V.E.2000,ApJ529985

Rutledge,R.E.,Bildsten,L.,Brown,E.F.,Pavlov,G.G.,Zavlin,V.E.2001a,ApJ551921

Rutledge,R.E.,Bildsten,L.,Brown,E.F.,Pavlov,G.G.,Zavlin,V.E.2001b,ApJ5591054

Rutledge,R.E.,Bildsten,L.,Brown,E.F.,Pavlov,G.G.,Zavlin,V.E.,2002a,ApJ577346

Rutledge,R.E.,Bildsten,L.,Brown,E.F.,Pavlov,G.G.,Zavlin,V.E.,Ushomirsky,G.2002b,ApJ580413Stella,L.,etal.1994,ApJ423L47

Tavani,M.,Arons,J.1997,ApJ477439

Tavani,M.,Brookshaw,L.1991,ApJ381L21Titarchuk,L.1994,ApJ434570

Welsh,W.F.,Robinson,E.L.,Young,P.2000,AJ120943

WijnandsR.2001,in“TheHighEnergyUniverseatSharpFocus:ChandraScience”,proceedingsofthe113thMeetingoftheAstronomicalSocietyofthePacific(astro-ph/0107600)

Wilms,J.,Allen,A.,McCray,R.2000,ApJ542914

LOGOF

TABLE1

AQLX-1OBSERVATIONS.

SatelliteSeq.Num.StartTime

Exposure(s)Orbitalphase

φorb

BSAXLECSBSAXMECS2123800112123800112001-04-142001-04-1430390763010.38–0.50(±0.02)0.38–0.50(±0.02)

Note.—aOrbitalphaserelativetominimumlight(inferiorconjunctionofthesecondary),ephemerisfromGarciaetal.(1999).ForChandradatathesearetakenfromRutledgeetal.(2002a).

5

SPECTRALFITOF

TABLE2

CHANDRAANDBEPPOSAXAQLX-1OBSERVATIONS.

Parameter

Value(90%c.l.)Componentflux(10−12cgs)

NH(C1)Powerlaw(C1)

.2

6.1+1−1.2

.5

4.0+0−0.5

6.2(81%)

NH(C3)

Powerlaw(C3)

.1

4.6+3−1.4

.6

3.4+1−1.6

1.5(51%)

6

FIG.2.—Powerlawphotonindexvs.columndensitycorrelationofthefiveAqlX-1observations.Overplottedisthebestlinearfit.Dashedlinesindicatetherangeoverwhichthesynchrotronemissionmodellikelyapplies.Onthehardestandsoftestobservations1σcountourshavebeensuperposed.The1,2,3σcountoursobtainedfittingtheentiresetofdatawithasinglepowerlawandcolumndensityisalsoreported.

因篇幅问题不能全部显示,请点此查看更多更全内容

Top