您好,欢迎来到伴沃教育。
搜索
您的当前位置:首页《电磁场与电磁波》试题

《电磁场与电磁波》试题

来源:伴沃教育
《电磁场与电磁波》试题1

填空题(每小题1分,共10分)

1.在均匀各向同性线性媒质中,设媒质的导磁率为,则磁感应强度B和磁场H满足的方程为: 。

22.设线性各向同性的均匀媒质中,0称为 方程。 3.时变电磁场中,数学表达式SEH称为 。

4.在理想导体的表面, 的切向分量等于零。

5.矢量场A(r)穿过闭合曲面S的通量的表达式为: 。

6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。 8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。

9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。

10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。

二、简述题 (每小题5分,共20分)

BEt,试说明其物理意义,并写出方程的积分形式。 11.已知麦克斯韦第二方程为

12.试简述唯一性定理,并说明其意义。

13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义?

三、计算题 (每小题10分,共30分)

15.按要求完成下列题目 (1)判断矢量函数

ˆxxzeˆyBy2e是否是某区域的磁通量密度?

(2)如果是,求相应的电流分布。 16.矢量

ˆxeˆy3eˆzA2e,

ˆx3eˆyeˆzB5e,求

(1)AB

(2)AB

17.在无源的自由空间中,电场强度复矢量的表达式为

ˆx3E0eˆy4E0ejkzEe

(1) 试写出其时间表达式; (2) 说明电磁波的传播方向;

四、应用题 (每小题10分,共30分)

18.均匀带电导体球,半径为a,带电量为Q。试求

(1) 球内任一点的电场强度 (2) 球外任一点的电位移矢量。

19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出); (2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。

图1

20.如图2所示的导体槽,底部保持电位为(1) 写出电位满足的方程; (2) 求槽内的电位分布

无穷远

U0,其余两面电位为零,

图2

五、综合题(10 分)

jzˆEeEexx021.设沿z方向传播的均匀平面电磁波垂直入射到理想导体,如图3所示,该电磁波电场只有分量即

(1) 求出入射波磁场表达式;

(2) 画出区域1中反射波电、磁场的方向。

区域1 区域2 图3

《电磁场与电磁波》试题2

一、填空题(每小题1分,共10分)

ED1.在均匀各向同性线性媒质中,设媒质的介电常数为,则电位移矢量和电场满足的方程为: 。

2.设线性各向同性的均匀媒质中电位为,媒质的介电常数为,电荷体密度为为 。

3.时变电磁场中,坡印廷矢量的数学表达式为 。 4.在理想导体的表面,电场强度的 分量等于零。

V,电位所满足的方程

5.表达式SArdSA称为矢量场(r)穿过闭合曲面S的 。

6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生 。 7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于 。 8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 。 9.对横电磁波而言,在波的传播方向上电场、磁场分量为 。

10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是 场,因此,它可用磁矢位函数的旋度来表示。

二、简述题 (每小题5分,共20分)

11.试简述磁通连续性原理,并写出其数学表达式。 12.简述亥姆霍兹定理,并说明其意义。

BEdldStS13.已知麦克斯韦第二方程为C,试说明其物理意义,并写出方程的微分形式。

14.什么是电磁波的极化?极化分为哪三种?

三、计算题 (每小题10分,共30分)

ˆxyzeˆzAyx2e15.矢量函数

,试求

(1)A

 A(2)

ˆxeˆyBˆˆA2ex2ez,e16.矢量,求

A(1)B

(2)求出两矢量的夹角

222u(x,y,z)xyz17.方程给出一球族,求

(1)求该标量场的梯度;

(2)求出通过点1,2,0处的单位法向矢量。

四、应用题 (每小题10分,共30分)

18.放在坐标原点的点电荷在空间任一点r处产生的电场强度表达式为

E

q40r2ˆre

(1)求出电力线方程;(2)画出电力线。

19.设点电荷位于金属直角劈上方,如图1所示,求 (1) 画出镜像电荷所在的位置

(2) 直角劈内任意一点(x,y,z)处的电位表达式

图1 20.设时变电磁场的电场强度和磁场强度分别为:

EE0cos(te) HH0cos(tm)

(1) 写出电场强度和磁场强度的复数表达式

1SavE0H0cos(em)2(2) 证明其坡印廷矢量的平均值为:

五、综合题 (10分)

jzˆEeEexx021.设沿z方向传播的均匀平面电磁波垂直入射到理想导体,如图2所示,该电磁波电场只有分量即

(3) 求出反射波电场的表达式; (4) 求出区域1 媒质的波阻抗。

区域1 区域2 图2

《电磁场与电磁波》试题3

一、填空题(每小题 1 分,共 10 分)

1.静电场中,在给定的边界条件下,拉普拉斯方程或 方程的解是唯一的,这一定理称为唯一性定理。 2.在自由空间中电磁波的传播速度为 m/s。

3.磁感应强度沿任一曲面S的积分称为穿过曲面S的 。 4.麦克斯韦方程是经典 理论的核心。

5.在无源区域中,变化的电场产生磁场,变化的磁场产生 ,使电磁场以波的形式传播出去,即电磁波。 6.在导电媒质中,电磁波的传播速度随频率变化的现象称为 。 7.电磁场在两种不同媒质分界面上满足的方程称为 。 8.两个相互靠近、又相互绝缘的任意形状的 可以构成电容器。

9.电介质中的束缚电荷在外加电场作用下,完全脱离分子的内部束缚力时,我们把这种现象称为 。 10.所谓分离变量法,就是将一个 函数表示成几个单变量函数乘积的方法。

二、简述题 (每小题 5分,共 20 分)

DHJt,试说明其物理意义,并写出方程的积分形式。 11.已知麦克斯韦第一方程为

12.试简述什么是均匀平面波。

13.试简述静电场的性质,并写出静电场的两个基本方程。 14.试写出泊松方程的表达式,并说明其意义。

三、计算题 (每小题10 分,共30分)

25ˆr2Eer,求 15.用球坐标表示的场

(1) 在直角坐标中点(-3,4,5)处的(2) 在直角坐标中点(-3,4,5)处的16.矢量函数

E;

Ex分量

ˆxyeˆyxeˆzAx2e,试求

(1)A

xy(2)若在平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A穿过此正方形的通量。

22u(x,y)xy17.已知某二维标量场,求

(1)标量函数的梯度;

(2)求出通过点1,0处梯度的大小。

四、应用体 (每小题 10分,共30分)

ˆx3E0ejkzEe18.在无源的自由空间中,电场强度复矢量的表达式为

(3) 试写出其时间表达式; (4) 判断其属于什么极化。

19.两点电荷q14C,位于x轴上x4处,q24C位于轴上y4处,求空间点0,0,4处的 (1) 电位;

(2) 求出该点处的电场强度矢量。

20.如图1所示的二维区域,上部保持电位为

U0,其余三面电位为零,

(1) 写出电位满足的方程和电位函数的边界条件 (2) 求槽内的电位分布

b

a

图1

五、综合题 (10 分)

21.设沿z方向传播的均匀平面电磁波垂直入射到理想导体,如图2所示,该电磁波为沿x方向的线极化,设电场强度

幅度为

E0,传播常数为。

(5) 试写出均匀平面电磁波入射波电场的表达式; (6) 求出反射系数。

区域1 区域2 图2

《电磁场与电磁波》试题(4)

一、填空题(每小题 1 分,共 10 分)

ˆxeˆyeˆzAe1.矢量

的大小为 。

2.由相对于观察者静止的,且其电量不随时间变化的电荷所产生的电场称为 。 3.若电磁波的电场强度矢量的方向随时间变化所描绘的轨迹是直线,则波称为 。 4.从矢量场的整体而言,无散场的 不能处处为零。

5.在无源区域中,变化的电场产生磁场,变化的磁场产生电场,使电磁场以 的形式传播出去,即电磁波。 6.随时间变化的电磁场称为 场。

7.从场角度来讲,电流是电流密度矢量场的 。

8.一个微小电流环,设其半径为a、电流为I,则磁偶极矩矢量的大小为 。

9.电介质中的束缚电荷在外加 作用下,完全脱离分子的内部束缚力时,我们把这种现象称为击穿。 10.法拉第电磁感应定律的微分形式为 。

二、简述题 (每小题 5分,共 20 分)

11.简述恒定磁场的性质,并写出其两个基本方程。 12.试写出在理想导体表面电位所满足的边界条件。 13.试简述静电平衡状态下带电导体的性质。 14.什么是色散?色散将对信号产生什么影响?

三、计算题 (每小题10 分,共30分)

23zx,y,zxye15.标量场,在点P1,1,0处

(1)求出其梯度的大小 (2)求梯度的方向 16.矢量

ˆx2eˆyAeˆx3eˆzBe,,求

A(1)B (2)AB

17.矢量场A的表达式为

ˆx4xeˆyy2Ae A(1)求矢量场的散度。

1,1(2)在点处计算矢量场A的大小。 四、应用题 (每小题 10分,共30分)

18.一个点电荷q位于a,0,0处,另一个点电荷2q位于a,0,0处,其中a0。 (1) 求出空间任一点x,y,z处电位的表达式; (2) 求出电场强度为零的点。

19.真空中均匀带电球体,其电荷密度为,半径为a,试求 (1) 球内任一点的电位移矢量 (2) 球外任一点的电场强度

20. 无限长直线电流I垂直于磁导率分别为1和2的两种磁介质的交界面,如图1所示。 (1) 写出两磁介质的交界面上磁感应强度满足的方程 (2) 求两种媒质中的磁感应强度B1和B2。

B1 B2

图1 1

2

五、综合题 (10分)

21. 设沿z方向传播的均匀平面电磁波垂直入射到理想导体,如图2所示,入射波电场的表达式为 (1)试画出入射波磁场的方向 (2)求出反射波电场表达式。

ˆyE0ejzEe

图2

《电磁场与电磁波》试题(5)

一、填空题(每小题 1 分,共 10 分)

1.静电场中,在给定的边界条件下,拉普拉斯方程或泊松方程的解是唯一的,这一定理称为 。 2.变化的磁场激发 ,是变压器和感应电动机的工作原理。 3.从矢量场的整体而言,无旋场的 不能处处为零。 4. 方程是经典电磁理论的核心。

5.如果两个不等于零的矢量的点乘等于零,则此两个矢量必然相互 。 6.在导电媒质中,电磁波的传播速度随 变化的现象称为色散。 7.电场强度矢量的方向随时间变化所描绘的 称为极化。 8.两个相互靠近、又相互 的任意形状的导体可以构成电容器。

9.电介质中的束缚电荷在外加电场作用下,完全 分子的内部束缚力时,我们把这种现象称为击穿。 10.所谓分离变量法,就是将一个多变量函数表示成几个 函数乘积的方法。

二、简述题 (每小题 5分,共 20 分)

11.简述高斯通量定理,并写出其积分形式和微分形式的表达式。 12.试简述电磁场在空间是如何传播的? 13.试简述何谓边界条件。

14.已知麦克斯韦第三方程为SBdS0,试说明其物理意义,并写出其微分形式。

三、计算题 (每小题10 分,共30分)

ˆxxeˆyxyeˆzy2zAe15.已知矢量

(1) 求出其散度 (2) 求出其旋度 16.矢量

ˆx2eˆyAeˆx3eˆzBe,,

A(1)分别求出矢量和B的大小

(2)AB

ˆxyeˆyxEe17.给定矢量函数

,试

E(1)求矢量场的散度。

3,4E(2)在点处计算该矢量的大小。 四、应用题 (每小题 10分,共30分

18.设无限长直线均匀分布有电荷,已知电荷密度为(1) 空间任一点处的电场强度; (2) 画出其电力线,并标出其方向。

图1 l如图1所示,求

19. 设半径为a的无限长圆柱内均匀地流动着强度为I的电流,设柱外为 自由空间,求

(1) 柱内离轴心r任一点处的磁场强度; (2) 柱外离轴心r任一点处的磁感应强度。

20.一个点电荷q位于一无限宽和厚的导电板上方,如图2所示, (1) 计算任意一点的Px,y,z的电位; (2) 写出z0的边界上电位的边界条件。

图2 五、综合题 (10分)

21.平面电磁波在

190的媒质1中沿z方向传播,在z0处垂直入射到240的媒质2中,120,

如图3所示。入射波电场极化为x方向,大小为(1)求出媒质1中入射波的电场表达式; (2)求媒质2中的波阻抗。

E0,自由空间的波数为k0,

媒质1 媒质2 图3

《电磁场与电磁波》试题(6)

一、填空题(每小题 1 分,共 10 分)

1.如果一个矢量场的旋度等于零,则称此矢量场为 。 2.电磁波的相速就是 传播的速度。

3. 实际上就是能量守恒定律在电磁问题中的具体表现。 4.在导电媒质中,电磁波的传播 随频率变化的现象称为色散。 5.一个标量场的性质,完全可以由它的 来表征。 6.由恒定电流所产生的磁场称为 。

7.若电磁波的电场强度矢量的方向随时间变化所描绘的轨迹是圆,则波称为 。 8.如果两个不等于零的矢量相互平行,则它们的叉积必等于 。 9.对平面电磁波而言,其电场和磁场均 于传播方向。

10.亥姆霍兹定理告诉我们,研究任何一个矢量场应该从矢量的 两个角度去研究。

二、简述题 (每小题 5分,共 20 分)

11.任一矢量场为A(r),写出其穿过闭合曲面S的通量表达式,并讨论之。

12.什么是静电场?并说明静电场的性质。 13.试解释什么是TEM波。

14.试写出理想导体表面电场所满足的边界条件。

三、计算题 (每小题10分,共30分)

ˆxyeˆyEx2e15.某矢量函数为(1)试求其散度

(2)判断此矢量函数是否可能是某区域的电场强度(静电场)?

CA16.已知A、B和为任意矢量,若BAC,则是否意味着 (1)B总等于C呢?

(2)试讨论之。

2,34,3定出,求该点在 17.在圆柱坐标系中,一点的位置由(1)直角坐标系中的坐标 (2)写出该点的位置矢量。

四、应用题 (每小题 10分,共30分)

18.设z0为两种媒质的分界面,z0为空气,其介电常数为

10,z0为介电常数250的媒质2。已知空气中的

ˆxeˆzE4e电场强度为1,求

(1)空气中的电位移矢量。 (2)媒质2中的电场强度。

19.设真空中无限长直导线电流为I,沿z轴放置,如图1所示。求

z I (1)空间各处的磁感应强度B

(2)画出其磁力线,并标出其方向。

图1 20.平行板电容器极板长为a、宽为b,极板间距为d,设两极板间的电压为U,如图2所示。求 (1)电容器中的电场强度; (2)上极板上所储存的电荷。

图 2 五、综合题 (10分)

21.平面电磁波在

190的媒质1中沿z方向传播,在z0处垂直入射到240的媒质2中,

120。电磁波极化为x方向,角频率为300Mrad/s,如图3所示。

(1)求出媒质1中电磁波的波数; (2)反射系数。

媒质1 媒质2 图3

《电磁场与电磁波》试题(7)

一、填空题 (每小题 1 分,共 10 分)

1.如果一个矢量场的散度等于零,则称此矢量场为 。 2.所谓群速就是包络或者是 传播的速度。

3.坡印廷定理,实际上就是 定律在电磁问题中的具体表现。 4.在理想导体的内部,电场强度 。

5.矢量场A(r)在闭合曲线C上环量的表达式为: 。

6.设电偶极子的电量为q,正、负电荷的距离为d,则电偶极矩矢量的大小可表示为 。 7.静电场是保守场,故电场强度从P1到P2的积分值与 无关。

8.如果两个不等于零的矢量的叉积等于零,则此两个矢量必然相互 。 9.对平面电磁波而言,其电场、磁场和波的 三者符合右手螺旋关系。

10.所谓矢量线,乃是这样一些曲线,在曲线上的每一点上,该点的切线方向与矢量场的方向 。

二、简述题 (每小题 5分,共 20 分)

11.什么是恒定磁场?它具有什么性质?

12.试简述法拉第电磁感应定律,并写出其数学表达式。 13.什么是相速?试写出群速与相速之间的关系式。

14.高斯通量定理的微分形式为D,试写出其积分形式,并说明其意义。

三、计算题 (每小题10 分,共30分)

15.自由空间中一点电荷位于S3,1,4,场点位于P2,2,3 (1)写出点电荷和场点的位置矢量

(2)求点电荷到场点的距离矢量R

2uyx,求 16.某二维标量函数

(1)标量函数梯度u

(2)求梯度在正x方向的投影。 17.矢量场

ˆxxeˆyyeˆzzAe,求

(1)矢量场的散度

(2)矢量场A在点1,2,2处的大小。 四、应用题 (每小题 10分,共30分)

18.电偶极子电量为q,正、负电荷间距为d,沿z轴放置,中心位于原点,如图1所示。 求(1)求出空间任一点处Px,y,z的电位表达式; (2)画出其电力线。

图1 19.同轴线内导体半径为a,外导体半径为b,内、外导体间介质为空气,其间电压为U (1)求ra处的电场强度; (2)求arb处的电位移矢量。

图2 22000B0.510T75101120.已知钢在某种磁饱和情况下磁导率,当钢中的磁感应强度、时,

此时磁力线由钢进入自由空间一侧后,如图3所示。

(1)B2与法线的夹角2 (2)磁感应强度B2的大小

图3

五、综合题 (10分)

21.平面电磁波在

190的媒质1中沿z方向传播,在z0处垂直入射到240的媒质2中,

120。极化为x方向,如图4所示。

(1)求出媒质2中电磁波的相速; (2)透射系数。

媒质1 媒质2 图4

《电磁场与电磁波》试题(8)

一、填空题(每小题 1 分,共 10 分)

1.已知电荷体密度为,其运动速度为v,则电流密度的表达式为: 。

2.设线性各向同性的均匀媒质中电位为,媒质的介电常数为,电荷体密度为零,为 。

3.时变电磁场中,平均坡印廷矢量的表达式为 。 4.时变电磁场中,变化的电场可以产生 。 5.位移电流的表达式为 。 6.两相距很近的等值异性的点电荷称为 。

7.恒定磁场是 场,故磁感应强度沿任一闭合曲面的积分等于零。

位所满足的方程

电8.如果两个不等于零的矢量的叉积等于零,则此两个矢量必然相互 。 9.对平面电磁波而言,其电场、磁场和波的 三者符合右手螺旋关系。

10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是连续的场,因此,它可用磁矢位函数的 来表示。

二、简述题 (每小题 5分,共 20 分)

DHdlJtdSS11.已知麦克斯韦第一方程为C,试说明其物理意义,并写出方程的微分形式。

12.什么是横电磁波?

13.从宏观的角度讲电荷是连续分布的。试讨论电荷的三种分布形式,并写出其数学表达式。

14.设任一矢量场为A(r),写出其穿过闭合曲线C的环量表达式,并讨论之。

三、计算题 (每小题5 分,共30分)

ˆx2eˆy3eˆz4BeAeˆx15.矢量和,求

(1)它们之间的夹角;

(2)矢量A在B上的分量。

ˆrr, E16.矢量场在球坐标系中表示为e(1)写出直角坐标中的表达式; (2)在点(1,2,2)处求出矢量场的大小。 17.某矢量场

ˆxyeˆyxAe,求

(1)矢量场的旋度;

(2)矢量场A的在点1,1处的大小。 四、应用题 (每小题 10分,共30分)

18.自由空间中一点电荷电量为2C,位于S1,2,1处,设观察点位于P3,4,5处,求 (1)观察点处的电位; (2)观察点处的电场强度。

19.无限长同轴电缆内导体半径为a,外导体的内、外半径分别为b和c。电缆中有恒定电流流过

(内导体上电流为I、外导体上电流为反方向的I),设内、外导体间为空气,如图1所示。 (1)求arb处的磁场强度; (2)求rc处的磁场强度。

图1

20.平行板电容器极板长为a、宽为b,极板间距为d,如图2所示。设xd的极板上的自由电荷总量为Q,求

(1) 电容器间电场强度; (2) 电容器极板间电压。

图 2 五、综合题 (10分)

21.平面电磁波在

190的媒质1中沿z方向传播,在z0处垂直入射到240的媒质2中,120。

极化为x方向,如图3所示。 (1)求出媒质2电磁波的波阻抗; (2)求出媒质1中电磁波的相速。

媒质1 媒质2 图3

《电磁场与电磁波》试题(9)

一.填空题(共20分,每小题4分)

1.对于某一标量u和某一矢量A:

(•u)= ;•(A)= 。

2.对于某一标量u,它的梯度用哈密顿算子表示为 ;在直角坐标系下表示为 。 3.写出安培力定律表达式 。 写出毕奥-沙伐定律表达式 。

4.真空中磁场的两个基本方程的积分形式为 和 。

5.分析静电矢量场时,对于各向同性的线性介质,两个基本场变量之间的关系为 ,通常称它为 。

二.判断题(共20分,每小题2分)

正确的在括号中打“√”,错误的打“×”。

1.电磁场是具有确定物理意义的矢量场,但这些矢量场在一定的区域内并不具有一定的分布规律。( ) 2.矢量场在闭合路径上的环流和在闭合面上的通量都是标量。( )

3.按统一规则绘制出的力线可以确定矢量场中各点矢量的方向,还可以根据力线的疏密判别出各处矢量的大小及变化趋势。( )

4.从任意闭合面穿出的恒定电流为零。( )

5.在无界真空中,如果电荷分布状态已确定,则他们的电场分布就可以确定。( ) 6.一根微小的永久磁针周围的磁场分布与微小电流环周围的磁场分布是不同的。( ) 7.电场强度是“场”变量,它表示电场对带电质点产生作用的能力。( ) 8.导体或介质所受到的静电力可以由能量的空间变化率计算得出。( )

9. 静电场空间中,任意导体单位表面所受力等于该导体单位表面的电荷量与该点的电场强度的乘积。( ) 10.无自由电流区域的磁场边值问题和无自由电荷区域的静电场边值问题完全相似,求解方法也相同。( )

三.简答题(共30分,每小题5分)

1.解释矢量的点积和差积。 2.说明矢量场的通量和环量。

3.当电流恒定时,写出电流连续性方程的积分形式和微分形式。 4.写出真空中静电场的两个基本方程的积分形式和微分形式。 5.写出静电场空间中,在不同的导电媒质交界面上的边界条件。 6.说明恒定磁场中的标量磁位。

四.计算题(共30分,每小题10分)

2axb,求与其相应得电场及其电荷的分布。 1.已知空气填充的平面电容器内的电位分布为

2.一半径为a的均匀带电圆盘,电荷面密度为,求圆盘外轴线上任一点的电场强度。

3.自由空间中一半径为a的无限长导体圆柱,其中均匀流过电流I,求导体内外的磁感应强度。

《电磁场与电磁波》试题(10)

一、填空题(共20分,每小题4分)

1.对于矢量A,若A=

exAx+eyAy+ezAz,

则:ey•ex= ;ez•ez= ;

ezex= ;

exex= 。

2.对于某一矢量A,它的散度定义式为 ; 用哈密顿算子表示为 。 3.对于矢量A,写出:

高斯定理 ; 斯托克斯定理 。

4.真空中静电场的两个基本方程的微分形式为 和 。 5.分析恒定磁场时,在无界真空中,两个基本场变量之间的关系为 ,通常称它为 。

二.判断题(共20分,每小题2分)

正确的在括号中打“√”,错误的打“×”。

1.描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。( ) 2.标量场的梯度运算和矢量场的旋度运算都是矢量。( ) 3.梯度的方向是等值面的切线方向。( ) 4.恒定电流场是一个无散度场。( )

5.一般说来,电场和磁场是共存于同一空间的,但在静止和恒定的情况下,电场和磁场可以进行分析。(6.静电场和恒定磁场都是矢量场,在本质上也是相同的。( )

7.研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物质内发生的静电现象。( ) 8.泊松方程和拉普拉斯方程都适用于有源区域。( )

9.静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方程的解都是唯一的。( ) 10.物质被磁化问题和磁化物质产生的宏观磁效应问题是不相关的两方面问题。( )

三.简答题(共30分,每小题5分)

1.用数学式说明梯无旋。

2.写出标量场的方向导数表达式并说明其涵义。 3.说明真空中电场强度和库仑定律。

) 4.实际边值问题的边界条件分为哪几类? 5.写出磁通连续性方程的积分形式和微分形式。 6.写出在恒定磁场中,不同介质交界面上的边界条件。

四.计算题(共30分,每小题10分)

1.半径分别为a,b(a>b),球心距为c(c球半径为b的球面内任何一点的电场强度。

2.总量为q的电荷均匀分布在单位半径为a,介电常数为的体内,球外为空气,求静电能量。 3.证明矢位

A1excosyeysinx和

A2ey(sinxxsiny)给出相同得磁场B并证明它们

有相同的电流分布,它们是否均满足矢量泊松方程?为什么?

《电磁场与电磁波》试题(11)

一.填空题(共20分,每小题4分)

1.对于矢量A,若A=则:

eAxx+

eAyxy+

eAzz,

e•ezx= ;= ;

e•ex= ; = 。

eezyeeyy2.哈密顿算子的表达式为= , 其性质是 。 3.电流连续性方程在电流恒定时,

积分形式的表达式为 ; 微分形式的表达式为 。 4.静电场空间中,在不同的导电媒质交界面上,边界条件为 和 。

5.用矢量分析方法研究恒定磁场时,需要两个基本的场变量,即 和 。

二.判断题(共20分,每小题2分)

正确的在括号中打“√”,错误的打“×”。

1.电磁场是具有确定物理意义的矢量场,这些矢量场在一定的区域内具有一定的分布规律,除有限个点或面以外,它们都是空间坐标的连续函数。( )

2.矢量场在闭合路径上的环流是标量,矢量场在闭合面上的通量是矢量。( ) 3.空间内标量值相等的点集合形成的曲面称为等值面。( ) 4.空间体积中有电流时,该空间内表面上便有面电流。( ) 5.电偶极子及其电场与磁偶极子及其磁场之间存在对偶关系。( )

6.静电场的点源是点电荷,它是一种“标量点源”;恒定磁场的点源是电流元,它是一种“矢量性质的点源”。( ) 7.泊松方程适用于有源区域,拉普拉斯方程适用于无源区域。( )

8.均匀导体中没有净电荷,在导体面或不同导体的分界面上,也没有电荷分布。( ) 9.介质表面单位面积上的力等于介质表面两侧能量密度之差。( ) 10.安培力可以用磁能量的空间变化率来计算。( )

三.简答题(共30分,每小题5分)

1.说明力线的微分方程式并给出其在直角坐标系下的形式。 2.说明矢量场的环量和旋度。

3.写出安培力定律和毕奥-沙伐定律的表达式。 4.说明静电场中的电位函数,并写出其定义式。

5.写出真空中磁场的两个基本方程的积分形式和微分形式。 6.说明矢量磁位和库仑规范。

四.计算题(共30分,每小题10分)

3x2y,Ax2yzey3xy2ezrot(A)1.已知求

2.自由空间一无限长均匀带电直线,其线电荷密度为

,求直线外一点的电场强度

3.半径为a的带电导体球,已知球体电位为U(无穷远处电位为零),试计算球外空间的电位函数。

《电磁场与电磁波》试题(12)

1. (12分)无限长同轴电缆内导体半径为R1,外导体半径为R2,内外导体之间的电压为U。现固定外导体半径R2,调整

内导体半径R1,问:

(1)内外导体半径的比值R1 /R2为多少时内导体表面上的电场强度最小,和最小电场强度Emin=?;

(2)此时电缆的特性阻抗Z0为多少?(设该同轴电缆中介质的参数为0和0)。 2. (12分)距半径为R的导体球心d(d>R)处有一点电荷q。问需要在球上加多少电荷Q才可以使作用于q上的力为零,

此时球面电位为多少?

3. (10分)半径为R的薄金属圆柱壳等分为二,互相绝缘又紧密靠近,如图所示。上半圆柱壳的电位为(+U),下半圆柱

壳的电位为(-U)。圆柱壳内充满介电常数为的均匀电介质,且无空间电荷分布。写出阴影区内静电场的边值问题。

l1y磁轭Ux-U

hl2样品Ra磁轭d

题3图 题4图

4. (10分)图示装置用以测量磁性材料的特性,上下为两个几何形状对称,相对磁导率为r1的U形磁轭,被测样品的相

对磁导率为r2(磁轭和样品的磁导率均远大于0),磁化线圈的匝数为N,电流为I,尺寸如图所示。求: (1)样品中的磁场强度H;

(2)样品中的磁化强度M与线圈电流I间的关系。

5. (12分)面积为A的平行圆形极板电容器,板间距离为d,外加低频电压uSUmcost,板间介质的电导率为,介

电常数为。求电源提供的复功率S。

6. (12分)一内阻为50的信号源,通过50cm长的无损耗传输线向负载馈电,传输线上电磁波的波长为100cm,传输线

终端负载ZL=50+j100,信号源的电压

uS210cost,传输线单位长度的电感L=0.25H,单位长度的电容

0

C0=100pF。求:

(1)电源的频率;

(2)传输线始端和终端的电压、电流相量; (3)负载与传输线上电压最大值处间的距离; (4)传输线上的驻波比。

7. (10分)均匀平面波从理想介质(r=1,r=16)垂直入射到理想导体表面上,测得理想介质中电场强度最大值为200V/m,

第一个最大电场强度值与理想导体表面的距离为1m,求: (1)该平面波的频率和相位常数;

(2)试写出介质中电场和磁场的瞬时表达式。

8. (12分) y方向线性极化的均匀平面电磁波在=90的理想介质中沿x方向传播,在x=0处垂直入射到=40的理想介

质表面,如图所示。若入射波的角频率=300rad/s,在介质分界面处电场强度的最大值为0.1V/m。求: (1)反射系数和透射系数;

(2)两种介质中电场、磁场的瞬时表达式;

(3)两种介质中坡印亭矢量的平均值。

9. (10分)如图所示,有两对短传输线平行放置。传输线1接低频电源,传输线1与传输线2之间存在电容性耦合干扰

和电感性耦合干扰。试:

(1)标出该系统中的部分电容并说明抑制电干扰的方式; (2)说明抑制磁干扰的方式。

μ0,ε9ε0μ0,ε4ε0E+0

x

uS- 题8图 题9图

《电磁场与电磁波》试题(13)

一、填空题(每题8分,共40分)

1、 真空中静电场高斯定理的内容是:__________________________________________

_______________________________________________________________________ ______________________________________________________________________。 2、 等位面的两个重要性质是:①_____________________________________________,

②____________________________________________________________________。

3、 真空中的静电场是__________场和__________场;而恒定磁场是____________场和__________场。

J___________。

4、 传导电流密度J___________。位移电流密度d电场能量密度We=___________。磁场能量密度Wm=___________。

5、 沿Z轴传播的平面电磁波的三角函数式:E_____________________,

H_________________________________;其波速V=__________________________,

波阻抗η=__________________,相位常数β=_______________________。

二、计算题(共60分)

1、(15分)如图内外半径分别为r、R的同轴电缆, 中间充塞两层同心介质:第一层ε1=2ε0, 其半径为r';第二层ε2=3ε0 。 现在内外柱面间加以直流电压U。 求:①电缆内各点的场强E 。

②单位长度电缆的电容。 ③单位长度电缆中的电场能。

2、(15分)在面积为S、相距为d的平板

电容器里,填以厚度各为d/2、介电常 数各为εr1和εr2的介质。将电容器两极 板接到电压为U0的直流电源上。 求:①电容器介质εr1和εr2内的场强; ②电容器极板所带的电量;

③电容器中的电场能量。

3、(10分)有一半径为R的圆电流I。 求:①其圆心处的磁感应强度B0=?

②在过圆心的垂线上、与圆心相距为H的一点P,其B=? 4、(10分)在Z轴原点,安置一个电偶极子天线。

已知电偶极子轴射场的表示式为:

ε2rr0Rε1EjI0l2r0j(tkr)1sineHEQ0

0

求:①在Y轴上距O点为r处的平均能流密度。

②和天线成45而距O点同样为r的地方的平均能流密度。 5、(10分)有一根长L=1m的电偶极子天线,,其激励波长λ=10m,

激励波源的电流振幅I=5A。试求该电偶极子天线的辐射电阻Rr和辐射功率PΣ。

《电磁场与电磁波》试题(14)

一、问答题(共40分)

1、(8分)请写出时变电磁场麦克斯韦方程组的积分形式和微分形式,并写出其辅助方程。

2、(8分)在两种媒质的交界面上,当自由电荷面密度为ρs、面电流密度为Js时,请写出E,D,B,H的边界条件的矢量表

达式。

3、(8分)什么叫TEM波,TE波,TM波,TE10波?

4、(8分)什么叫辐射电阻?偶极子天线的辐射电阻与哪些因素有关? 5、(8分)什么是滞后位?请简述其意义。

二、计算题(共60分)

1、(10分)在真空里,电偶极子电场中的任意点M(r、θ、φ)的电位为

140Pcosr2(式中,P为电偶极矩,Pql),

11r000rrrsin而  。 试求M点的电场强度E。

2、(15分)半径为R的无限长圆柱体均匀带电,电荷

体密度为ρ。请以其轴线为参考电位点, 求该圆柱体内外电位的分布。

3、(10分)一个位于Z轴上的直线电流I=3安培,在其旁

边放置一个矩形导线框,a=5米,b=8米,h=5米。 最初,导线框截面的法线与I垂直(如图),然后将该 截面旋转90,保持a、b不变,让其法线与I平行。 求:①两种情况下,载流导线与矩形线框的互感系数M。 ②设线框中有I′=4安培的电流,求两者间的互感磁能。

4、(10分)P为介质(2)中离介质边界极近的一点。

已知电介质外的真空中电场强度为E1,其方向与 电介质分界面的夹角为θ。在电介质界面无自由电 荷存在。求:①P点电场强度E2的大小和方向;

5、(15分)在半径为R、电荷体密度为ρ的球形

均匀带电体内部有一个不带电的球形空腔, 其半径为r,两球心的距离为a(r<a<R)。

0

ROarx介电常数都按ε0计算。 求空腔内的电场强度E。

《电磁场与电磁波》试题(15)

一、填空题(每题8分,共40分)

1、 在国际单位制中,电场强度的单位是________;电通量密度的单位是___________;

磁场强度的单位是____________;磁感应强度的单位是___________;真空中介电常数的单位是____________。 2、静电场E和电位Ψ的关系是E=_____________。E的方向是从电位_______处指向电位______处。 3、位移电流与传导电流不同,它与电荷___________无关。只要电场随__________变化,

就会有位移电流;而且频率越高,位移电流密度___________。位移电流存在于____________和一切___________中。 4、在两种媒质分界面的两侧,电场E的切向分量E1t-E2t=________;而磁场B的法向分量B1n-B2n=_________;

电流密度J的法向分量J1n-J2n=___________。

5、沿Z轴传播的平面电磁波的复数表示式为:E_____________________,

H____________________。

二、计算题(共60分)

1、(15分)在真空中,有一均 匀带电的长度为L的细杆, 其电荷线密度为τ。 求在其横坐标延长线上距 杆端为d的一点P处的电 场强度EP。

2、(10分)已知某同轴电容器的内导体半径为a,外导体的内半径为c,

在a﹤r﹤b (b﹤c)部分填充电容率为ε的电介质,求其单位长度上的电容。 3、(10分)一根长直螺线管,其长度L=1.0米,截面积S=10厘米,

匝数N1=1000匝。在其中段密绕一个匝数N2=20匝的短线圈, 请计算这两个线圈的互感M。

4、(10分)某回路由两个半径分别为R和r的 半圆形导体与两段直导体组成,其中通有电流I。

2

求中心点O处的磁感应强度B。

85、(15分)电场强度为EaY37.7COS(610t2Z)

伏/米的电磁波在自由空间传播。问: 该波是不是均匀平面波?并请说明其传播方向。 求:(1)波阻抗; (2)相位常数; (3)波长; (4)相速; (5)H的大小和方向;(6)坡印廷矢量。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- bangwoyixia.com 版权所有 湘ICP备2023022004号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务