热门搜索 :
考研考公
您的当前位置:首页正文

ltm

来源:伴沃教育
Package‘ltm’

February20,2015

TitleLatentTraitModelsunderIRTVersion1.0-0Date2013-12-20

AuthorDimitrisRizopoulosMaintainerDimitrisRizopoulos

DescriptionAnalysisofmultivariatedichotomousandpolytomousdatausinglatenttraitmodelsun-dertheItemResponseTheoryapproach.ItincludestheRasch,theTwo-ParameterLogis-tic,theBirnbaum'sThree-Parameter,theGradedResponse,andtheGeneralizedPar-tialCreditModels.DependsR(>=2.14.0),MASS,msm,polycorLazyLoadyesLazyDatayesLicenseGPL(>=2)

URLhttp://rwiki.sciviews.org/doku.php?id=packages:cran:ltmNeedsCompilationnoRepositoryCRAN

Date/Publication2013-12-2010:59:19

Rtopicsdocumented:

ltm-package..Abortion....anova.....biserial.cor..coef......cronbach.alphadescript....Environment..factor.scores..fitted......gh.......

..........................................................................................................................................................1...................................................................................................................................................................................................................................................................................23478101113141719

2

GoF.......gpcm......grm.......information...item.fit......LSAT......ltm........margins.....Mobility.....mult.choice...person.fit....plotdescript...plotfscores...plotIRT.....rasch.......rcor.test.....residuals.....rmvlogis.....Science.....summary....testEquatingDatatpm.......unidimTest...vcov.......WIRS......

Index

.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

ltm-package.............................................................................................................................1921242728303135373839424344485253545657596063666768

ltm-packageLatentTraitModelsforItemResponseTheoryAnalyses

Description

ThispackageprovidesaflexibleframeworkforItemResponseTheoryanalysesfordichotomousandpolytomousdataunderaMarginalMaximumLikelihoodapproach.ThefittingalgorithmsprovidevalidinferencesunderMissingAtRandommissingdatamechanisms.Details

Package:Type:Version:Date:License:

ltmPackage1.0-0

2013-12-20

GPL

Thefollowingoptionsareavailable:

Abortion3

Descriptives:samplesproportions,missingvaluesinformation,biserialcorrelationofitemswith

totalscore,pairwiseassociationsbetweenitems,Cronbach’sα,unidimensionalitycheckus-ingmodifiedparallelanalysis,nonparametriccorrelationcoefficient,plottingofsamplepro-portionsversustotalscore.Dichotomousdata:RaschModel,TwoParameterLogisticModel,Birnbaum’sThreeParameter

Model,andLatentTraitModeluptotwolatentvariables(allowingalsofornonlineartermsbetweenthelatenttraits).Polytomousdata:Samejima’sGradedResponseModelandtheGeneralizedPartialCreditModel.Goodness-of-Fit:BootstrappedPearsonχ2forRaschandGeneralizedPartialCreditmodels,fiton

thetwo-andthree-waymarginsforallmodels,likelihoodratiotestsbetweennestedmodels(includingAICandBICcriteriavalues),anditem-andperson-fitstatistics.FactorScoring-AbilityEstimates:EmpiricalBayes(i.e.,posteriormodes),Expectedaposte-riori(i.e.,posteriormeans),MultipleImputedEmpiricalBayes,andComponentScoresfordichotomousdata.TestEquating:AlternateFormEquating(wherecommonanduniqueitemsareanalyzedsimul-taneously)andAcrossSampleEquating(wheredifferentsetsofuniqueitemsareanalyzedseparatelybasedonpreviouslycalibratedanchoritems).Plotting:ItemCharacteristicCurves,ItemInformationCurves,TestInformationFunctions,Stan-dardErrorofMeasurement,StandardizedLoadingsScatterplot(forthetwo-factorlatenttraitmodel),ItemOperationCharacteristicCurves(forordinalpolytomousdata),ItemPersonMaps.MoreinformationaswellasRscriptfilescontainingsampleanalysescanbefoundintheRwikipageofltmavailableat:

http://rwiki.sciviews.org/doku.php?id=packages:cran:ltm.Author(s)

DimitrisRizopoulos

Maintainer:DimitrisRizopoulosReferences

Baker,F.andKim,S-H.(2004)ItemResponseTheory,2nded.NewYork:MarcelDekker.Rizopoulos,D.(2006)ltm:AnRpackageforlatentvariablemodellinganditemresponsetheoryanalyses.JournalofStatisticalSoftware,17(5),1–25.URLhttp://www.jstatsoft.org/v17/i05/

AbortionAttitudeTowardsAbortion

Description

Thedatacontainresponsesgivenby410individualstofouroutofsevenitemsconcerningattitudetoabortion.Asmallnumberofindividualdidnotanswertosomeofthequestionsandthisdatasetcontainsonlythecompletecases.

4Format

anova

379individualsansweredtothefollowingquestionsafterbeingaskedifthelawshouldallowabor-tionunderthecircumstancespresentedundereachitem,Item1Thewomandecidesonherownthatshedoesnot.Item2Thecoupleagreethattheydonotwishtohaveachild.Item3Thewomanisnotmarriedanddoesnotwishtomarrytheman.Item4Thecouplecannotaffordanymorechildren.Source

1986BritishSocialAttitudesSurvey(McGrathandWaterton,1986).References

Bartholomew,D.,Steel,F.,Moustaki,I.andGalbraith,J.(2002)TheAnalysisandInterpretationofMultivariateDataforSocialScientists.London:ChapmanandHall.

Knott,M.,Albanese,M.andGalbraith,J.(1990)Scoringattitudestoabortion.TheStatistician,40,217–223.

McGrath,K.andWaterton,J.(1986)Britishsocialattitudes,1983-86panelsurvey.London:SCPR.Examples

##DescriptivestatisticsforAbortiondatadsc<-descript(Abortion)dsc

plot(dsc)

anovaAnovamethodforfittedIRTmodels

Description

PerformsaLikelihoodRatioTestbetweentwonestedIRTmodels.Usage

##S3methodforclass󰁜gpcm󰁜

anova(object,object2,simulate.p.value=FALSE,

B=200,verbose=getOption(\"verbose\"),seed=NULL,...)##S3methodforclass󰁜grm󰁜anova(object,object2,...)

anova

##S3methodforclass󰁜ltm󰁜anova(object,object2,...)##S3methodforclass󰁜rasch󰁜anova(object,object2,...)##S3methodforclass󰁜tpm󰁜anova(object,object2,...)Arguments

objectobject2

5

anobjectinheritingfromeitherclassgpcm,classgrm,classltm,classraschorclasstpm,representingthemodelunderthenullhypothesis.

anobjectinheritingfromeitherclassgpcm,classgrm,classltm,classrasch,orclasstpm,representingthemodelunderthealternativehypothesis.

simulate.p.value

logical;ifTRUE,thereportedp-valueisbasedonaparametricBootstrapap-proach.

thenumberofBootstrapsamples.

logical;ifTRUE,informationisprintedintheconsoleduringtheparametricBootstrap.

theseedtobeusedduringtheparametricBootstrap;ifNULL,arandomseedisused.

additionalarguments;currentlynoneisused.

Bverboseseed...Details

anova.gpcm()alsoincludestheoptiontoestimatethep-valueoftheLRTusingaparametricBoot-strapapproach.Inparticular,Bdatasetsaresimulatedunderthenullhypothesis(i.e.,underthegeneralizedpartialcreditmodelobject),andboththenullandalternativemodelsarefittedandthe

B󰀇

valueofLRTiscomputed.Thenthep-valueisapproximateusing[1+I(Ti>Tobs)]/(B+1),whereTobsisthevalueofthelikelihoodratiostatisticintheoriginaldataset,andTithevalueofthestatisticintheithBootstrapsample.

Inaddition,whensimulate.p.value=TRUEobjectsofclassaov.gpcmhaveamethodfortheplot()genericfunctionthatproducesaQQplotcomparingtheBootstrapsampleoflikelihoodrationstatisticwiththeasymptoticchi-squareddistribution.Forinstance,youcanusesomethinglikethefollowing:lrt<-anova(obj1,obj2,simulate.p.value=TRUE);plot(lrt).Value

Anobjectofeitherclassaov.gpcm,aov.grm,classaov.ltmorclassaov.raschwithcomponents,nam0L0nb0aic0

thenameofobject.

thelog-likelihoodunderthenullhypothesis(object).thenumberofparameterinobject;returnedonlyinaov.gpcm.theAICvalueforthemodelgivenbyobject.

i=1

6

bic0nam1L1nb1aic1bic1LRTdfp.valueWarning

theBICvalueforthemodelgivenbyobject.thenameofobject2.

thelog-likelihoodunderthealternativehypothesis(object2).thenumberofparameterinobject;returnedonlyinaov.gpcm.theAICvalueforthemodelgivenbyobject2.theBICvalueforthemodelgivenbyobject2.thevalueoftheLikelihoodRatioTeststatistic.

anova

thedegreesoffreedomforthetest(i.e.,thedifferenceinthenumberofparame-ters).

thep-valueofthetest.

Thecodedoesnotcheckifthemodelsarenested!TheuserisresponsibletosupplynestedmodelsinordertheLRTtobevalid.

Whenobject2representsathreeparametermodel,notethatthenullhypothesisinontheboundaryoftheparameterspacefortheguessingparameters.Thus,theChi-squaredreferencedistributionusedbythesefunctionmightnotbetotallyappropriate.Author(s)

DimitrisRizopoulosSeeAlso

GoF.gpcm,GoF.rasch,gpcm,grm,ltm,rasch,tpmExamples

##LRTbetweentheconstrainedandunconstrainedGRMs##fortheSciencedata:

fit0<-grm(Science[c(1,3,4,7)],constrained=TRUE)fit1<-grm(Science[c(1,3,4,7)])anova(fit0,fit1)

##LRTbetweentheone-andtwo-factormodels##fortheWIRSdata:

anova(ltm(WIRS~z1),ltm(WIRS~z1+z2))

##AnLRTbetweentheRaschandaconstrained

##two-parameterlogisticmodelfortheWIRSdata:fit0<-rasch(WIRS)

fit1<-ltm(WIRS~z1,constraint=cbind(c(1,3,5),2,1))anova(fit0,fit1)

biserial.cor7

##AnLRTbetweentheconstrained(discrimination##parameterequals1)andtheunconstrainedRasch##modelfortheLSATdata:

fit0<-rasch(LSAT,constraint=rbind(c(6,1)))fit1<-rasch(LSAT)anova(fit0,fit1)

##AnLRTbetweentheRaschandthetwo-parameter##logisticmodelfortheLSATdata:anova(rasch(LSAT),ltm(LSAT~z1))

biserial.corPoint-BiserialCorrelation

Description

Computesthepoint-biserialcorrelationbetweenadichotomousandacontinuousvariable.Usage

biserial.cor(x,y,use=c(\"all.obs\\"complete.obs\"),level=1)

Arguments

xyuse

anumericvectorrepresentingthecontinuousvariable.

afactororanumericvector(thatwillbeconvertedtoafactor)representingthedichotomousvariable.

Ifuseis\"all.obshenthepresenceofmissingobservationswillproduceanerror.Ifuseis\"complete.obs\"thenmissingvaluesarehandledbycasewisedeletion.

whichlevelofytouse.

levelDetails

Thepointbiserialcorrelationcomputedbybiserial.cor()isdefinedasfollows

󰀌

(X1−X0)π(1−π)r=,

Sx

whereX1andX0denotethesamplemeansoftheX-valuescorrespondingtothefirstandsecondlevelofY,respectively,SxisthesamplestandarddeviationofX,andπisthesampleproportionforY=1.ThefirstlevelofYisdefinedbythelevelargument;seeExamples.

8Value

the(numeric)valueofthepoint-biserialcorrelation.Note

coef

Changingtheorderofthelevelsforywillproduceadifferentresult.Bydefault,thefirstlevelisusedasareferencelevelAuthor(s)

DimitrisRizopoulosExamples

#thepoint-biserialcorrelationbetween#thetotalscoreandthefirstitem,using#󰁜0󰁜asthereferencelevel

biserial.cor(rowSums(LSAT),LSAT[[1]])

#andusing󰁜1󰁜asthereferencelevel

biserial.cor(rowSums(LSAT),LSAT[[1]],level=2)

coefExtractEstimatedLoadings

Description

Extractstheestimatedparametersfromeithergrm,ltm,raschortpmobjects.Usage

##S3methodforclass󰁜gpcm󰁜coef(object,...)

##S3methodforclass󰁜grm󰁜coef(object,...)

##S3methodforclass󰁜ltm󰁜

coef(object,standardized=FALSE,prob=FALSE,order=FALSE,...)##S3methodforclass󰁜rasch󰁜

coef(object,prob=FALSE,order=FALSE,...)##S3methodforclass󰁜tpm󰁜

coef(object,prob=FALSE,order=FALSE,...)

coefArguments

objectstandardizedproborder...Details

9

anobjectinheritingfromeitherclassgpcm,classgrm,classltm,classraschorclasstpm.

logical;ifTRUEthestandardizedloadingsarealsoreturned.SeeDetailsformoreinfo.

logical;ifTRUEtheprobabilityofapositiveresponseforthemedianindividual(i.e.,Pr(xi=1|z=0),withi=1,...,pdenotingtheitems)isalsoreturned.logical;ifTRUEtheitemsaresortedaccordingtothedifficultyestimates.additionalarguments;currentlynoneisused.

ThestandardizationofthefactorloadingsisusefulinordertoformalinktotheUnderlyingVariableapproach.Inparticular,thestandardizedformofthefactorloadingsrepresentsthecorrelationcoefficientbetweenthelatentvariablesandtheunderlyingcontinuousvariablesbasedonwhichthedichotomousoutcomesarise(seeBartholomewandKnott,1999,p.87-88orBartholomewetal.,2002,p.191).

Thestandardizedfactorloadingsarecomputedonlyforthelinearone-andtwo-factormodels,fittedbyltm().Value

Alistoramatrixoftheestimatedparametersforthefittedmodel.Author(s)

DimitrisRizopoulosReferences

Bartholomew,D.andKnott,M.(1999)LatentVariableModelsandFactorAnalysis,2nded.Lon-don:Arnold.

Bartholomew,D.,Steel,F.,Moustaki,I.andGalbraith,J.(2002)TheAnalysisandInterpretationofMultivariateDataforSocialScientists.London:ChapmanandHall.SeeAlso

gpcm,grm,ltm,rasch,tpmExamples

fit<-grm(Science[c(1,3,4,7)])coef(fit)

fit<-ltm(LSAT~z1)coef(fit,TRUE,TRUE)

10

m<-rasch(LSAT)

coef(fit,TRUE,TRUE)

cronbach.alpha

cronbach.alphaCronbach’salpha

Description

ComputesCronbach’salphaforagivendata-set.Usage

cronbach.alpha(data,standardized=FALSE,CI=FALSE,

probs=c(0.025,0.975),B=1000,na.rm=FALSE)

Arguments

datastandardizedCIprobsBna.rmDetails

TheCronbach’salphacomputedbycronbach.alpha()isdefinedasfollows

󰀅󰀆󰀇p

2σpyi

α=1−i=1,2p−1σx

22

wherepisthenumberofitemsσxisthevarianceoftheobservedtotaltestscores,andσyistheivarianceoftheithitem.

amatrixoradata.framecontainingtheitemsascolumns.logical;ifTRUEthestandardizedCronbach’salphaiscomputed.

logical;ifTRUEaBootstrapconfidenceintervalforCronbach’salphaiscom-puted.

anumericvectoroflengthtwoindicatingwhichquantilestousefortheBoot-strapCI.

thenumberofBootstrapsamplestouse.logical;whattodowithNA’s.

ThestandardizedCronbach’salphacomputedbycronbach.alpha()isdefinedasfollows

αs=

p·r¯

,

1+(p−1)·r¯

wherepisthenumberofitems,andr¯istheaverageofall(Pearson)correlationcoefficientsbetween

theitems.Inthiscaseifna.rm=TRUE,thenthecompleteobservations(i.e.,rows)areused.TheBootstrapconfidenceintervaliscalculatedbysimplytakingBsampleswithreplacementfromdata,calculatingforeachαorαs,andcomputingthequantilesaccordingtoprobs.

descriptValue

cronbach.alpha()returnsanobjectofclasscronbachAlphawithcomponentsalphanp

standardizednameciprobsBAuthor(s)

DimitrisRizopoulosReferences

thevalueofCronbach’salpha.thenumberofsampleunits.thenumberofitems.

acopyofthestandardizedargument.thenameofargumentdata.

theconfidenceintervalforalpha;returnedifCI=TRUE.acopyoftheprobsargument;returnedifCI=TRUE.acopyoftheBargument;returnedifCI=TRUE.

11

Cronbach,L.J.(1951)Coefficientalphaandtheinternalstructureoftests.Psychometrika,16,297–334.Examples

#Cronbach󰁜salphafortheLSATdata-set#withaBootstrap95%CI

cronbach.alpha(LSAT,CI=TRUE,B=500)

descriptDescriptiveStatistics

Description

Computesdescriptivestatisticsfordichotomousandpolytomousresponsematrices.Usage

descript(data,n.print=10,chi.squared=TRUE,B=1000)

12Arguments

datan.printchi.squaredB

descript

amatrixoradata.framecontainingthemanifestvariablesascolumns.numericindicatingthenumberofpairwiseassociationswiththehighestp-valuestobeprinted.

logical;ifTRUEthechi-squaredtestforthepairwiseassociationsbetweenitemsisperformed.SeeDetailsformoreinfo.

anintegerspecifyingthenumberofreplicatesusedintheMonteCarlotest(i.e.,thisistheBargumentofchisq.test()).

Details

Thefollowingdescriptivestatisticsarereturnedbydescript():

(i)theproportionsforallthepossibleresponsecategoriesforeachitem.Incaseallitemsare

dichotomous,thelogitoftheproportionforthepositiveresponsesisalsoincluded.(ii)thefrequenciesofallpossibletotalscores.Thetotalscoreofaresponsepatternissimply

itssum.Fordichotomousitemsthisisthenumberofpositiveresponses,whereasforpoly-tomousitemsthisisthesumofthelevelsrepresentedasnumericvalues(e.g.,theresponsecategories\"veryconcerned\\"slightlyconcerned\and\"notveryconcerned\"inEnvironmentarerepresentedas1,2,and3).(iii)Cronbach’salpha,forallitemsandexcludingeachtimeoneoftheitems.

(iv)fordichotomousresponsematricestwoversionsofthepointbiserialcorrelationofeachitem

withthetotalscorearereturned.Inthefirstonetheitemisincludedinthecomputationofthetotalscore,andinthesecondoneisexcluded.(v)pairwiseassociationsbetweenitems.Beforeananalysiswithlatentvariablemodels,itisuseful

toinspectthedataforevidenceofpositivecorrelations.Inthecaseofbinaryorpolytomousdata,thisadhoccheckisperformedbyconstructingthe2×2contingencytablesforallpossi-blepairsofitemsandexaminetheChi-squaredp-values.Incaseanyexpectedfrequenciesaresmallerthan5,simulate.p.valueisturnedtoTRUEinchisq.test(),usingBresamples.Value

descript()returnsanobjectofclassdescriptwithcomponents,sampleperc

anumericvectoroflength2,withelementsthenumberofitemsandthenumberofsampleunits.

anumericmatrixcontainingthepercentagesofnegativeandpositiveresponsesforeachitem.Ifdatacontainsonlydichotomousmanifestvariablesthelogitofthepositiveresponses(i.e.,secondrow)isalsoincluded.anumericmatrixcontainingthefrequenciesforthetotalscores.

amatrixcontainingthep-valuesforthepairwiseassociationbetweentheitems.thevalueofthen.printargument.thenameofargumentdata.

anumericmatrixcontainingthefrequencyandpercentagesofmissingvaluesforeachitem;returnedonlyifanyNA’sexistindata.

itemspw.assn.printnamemissin

Environment

bisCorrExBisCorr

13

anumericvectorcontainingsampleestimatesofthebiserialcorrelationofdi-chotomousmanifestvariableswiththetotalscore.

anumericvectorcontainingsampleestimatesofthebiserialcorrelationofdi-chotomousmanifestvariableswiththetotalscore,wherethelatteriscomputedbyexcludingthespecificitem.acopyofthedata.

anumericmatrixwithonecolumncontainingthesampleestimatesofCron-bach’salpha,forallitemsandexcludingeachtimeoneitem.

dataalpha

Author(s)

DimitrisRizopoulosSeeAlso

plot.descript,unidimTestExamples

##DescriptivesforLSATdata:dsc<-descript(LSAT,3)dsc

plot(dsc,type=\"b\lty=1,pch=1:5)

legend(\"topleft\names(LSAT),pch=1:5,col=1:5,lty=1,bty=\"n\")

EnvironmentAttitudetotheEnvironment

Description

ThisdatasetcomesfromtheEnvironmentsectionofthe1990BritishSocialAttitudesSurvey(Brooketal.,1991).Asampleof291respondedtothequestionsbelow:Format

Allofthebelowitemsweremeasuredonathree-groupscalewithresponsecategories\"verycon-cerned\\"slightlyconcerned\"and\"notveryconcerned\":LeadPetrolLeadfrompetrol.RiverSeaRiverandseapollution.

RadioWasteTransportandstorageofradioactivewaste.AirPollutionAirpollution.

ChemicalsTransportanddisposalofpoisonouschemicals.NuclearRisksfromnuclearpowerstation.

14References

factor.scores

Bartholomew,D.,Steel,F.,Moustaki,I.andGalbraith,J.(2002)TheAnalysisandInterpretationofMultivariateDataforSocialScientists.London:ChapmanandHall.

Brook,L.,Taylor,B.andPrior,G.(1991)BritishSocialAttitudes,1990,Survey.London:SCPR.Examples

##DescriptivestatisticsforEnvironmentdatadescript(Environment)

factor.scoresFactorScores-AbilityEstimates

Description

Computationoffactorscoresforgrm,ltm,raschandtpmmodels.Usage

factor.scores(object,...)

##S3methodforclass󰁜gpcm󰁜

factor.scores(object,resp.patterns=NULL,

method=c(\"EB\\"EAP\\"MI\"),B=5,robust.se=FALSE,prior=TRUE,return.MIvalues=FALSE,...)##S3methodforclass󰁜grm󰁜

factor.scores(object,resp.patterns=NULL,

method=c(\"EB\\"EAP\\"MI\"),B=5,prior=TRUE,return.MIvalues=FALSE,...)##S3methodforclass󰁜ltm󰁜

factor.scores(object,resp.patterns=NULL,

method=c(\"EB\\"EAP\\"MI\\"Component\"),B=5,

robust.se=FALSE,prior=TRUE,return.MIvalues=FALSE,...)##S3methodforclass󰁜rasch󰁜

factor.scores(object,resp.patterns=NULL,

method=c(\"EB\\"EAP\\"MI\"),B=5,robust.se=FALSE,prior=TRUE,return.MIvalues=FALSE,...)##S3methodforclass󰁜tpm󰁜

factor.scores(object,resp.patterns=NULL,

method=c(\"EB\\"EAP\\"MI\"),B=5,prior=TRUE,return.MIvalues=FALSE,...)

factor.scoresArguments

objectresp.patternsmethod

15

anobjectinheritingfromeitherclassgpcm,classgrm,classltm,classraschorclasstpm.

amatrixoradata.frameofresponsepatternswithcolumnsdenotingtheitems;ifNULLthefactorscoresarecomputedfortheobservedresponsepatterns.acharactersupplyingthescoringmethod;availablemethodsare:EmpiricalBayes,ExpectedaPosteriori,MultipleImputation,andComponent.SeeDe-tailssectionformoreinfo.

thenumberofmultipleimputationstobeusedifmethod=\"MI\".

logical;ifTRUEthesandwichestimatorisusedfortheestimationofthecovari-ancematrixoftheMLEs.SeeDetailssectionformoreinfo.

logical.IfTRUE,thenthepriornormaldistributionforthelatentabilitiesistakenintoaccountinthecalculationoftheposteriormodes,whenmethod=\"EB\".logical.IfTRUE,thentheestimatedz-valuesandtheircovariancematrixarecon-tainedasextraattributes\"zvalues.MI\"and\"var.zvalues.MI\",respectively,inthereturnedscore.datdataframe.

B

robust.seprior

return.MIvalues

...Details

additionalarguments;currentlynoneisused.

Factorscoresorabilityestimatesaresummarymeasuresoftheposteriordistributionp(z|x),wherezdenotesthevectoroflatentvariablesandxthevectorofmanifestvariables.

UsuallyasfactorscoresweassignthemodesoftheaboveposteriordistributionevaluatedattheMLEs.TheseEmpiricalBayesestimates(usemethod=\"EB\")andtheirassociatedvariancearegoodmeasuresoftheposteriordistributionwhilep→∞,wherepisthenumberofitems.Thisisbasedontheresult

ˆ)(1+O(1/p)),p(z|x)=p(z|x;θˆaretheMLEs.However,incaseswherepand/orn(thesamplesize)issmallweignorethewhereθ

variabilityofplugging-inestimatesbutnotthetrueparametervalues.AsolutiontothisproblemcanbegivenusingMultipleImputation(MI;usemethod=\"MI\").Inparticular,MIisusedtheotherwayaround,i.e.,

ˆC(θˆ)),whereC(θˆ)isthelargesampleStep1:Simulatenewparametervalues,sayθ∗,fromN(θ,

ˆ(ifrobust.se=TRUE,C(θˆ)isbasedonthesandwichestimator).covariancematrixofθStep2:Maximizep(z|x;θ∗)wrtzandalsocomputetheassociatedvariancetothismode.Step3:Repeatsteps1-2BtimesandcombinetheestimatesusingtheknownformulasofMI.Thisschemeexplicitlyacknowledgestheignoranceofthetrueparametervaluesbydrawingfrom

theirlargesampleposteriordistributionwhiletakingintoaccountthesamplingerror.Themodesoftheposteriordistributionp(z|x;θ)arenumericallyapproximatedusingtheBFGSalgorithminoptim().

TheExpectedaposterioriscores(usemethod=\"EAP\")computedbyfactor.scores()arede-finedasfollows:󰀋

ˆ)dz.zp(z|x;θ

16factor.scores

TheComponentscores(usemethod=\"Component\")proposedbyBartholomew(1984)isanalternativemethodtoscalethesampleunitsinthelatentdimensionsidentifiedbythemodelthatavoidsthecalculationoftheposteriormode.However,thismethodisnotvalidinthegeneralcasewherenonlinearlatenttermsareassumed.

Value

Anobjectofclassfscoresisalistwithcomponents,score.dat

thedata.frameofobservedresponsepatternsincluding,observedandexpectedfrequencies(onlyiftheobserveddataresponsematrixcontainsnomissingvales),thefactorscoresandtheirstandarderrors.acharactergivingthescoringmethodused.

thenumberofmultipleimputationsused;relevantonlyifmethod=\"MI\".acopyofthematchedcallofobject.

logical;isTRUEifresp.patternsargumenthasbeenspecified.

theparameterestimatesreturnedbycoef(object);thisisNULLwhenobjectinheritsfromclassgrm.

methodBcallresp.patscoef

Author(s)

DimitrisRizopoulosReferences

Bartholomew,D.(1984)Scalingbinarydatausingafactormodel.JournaloftheRoyalStatisticalSociety,SeriesB,46,120–123.

Bartholomew,D.andKnott,M.(1999)LatentVariableModelsandFactorAnalysis,2nded.Lon-don:Arnold.

Bartholomew,D.,Steel,F.,Moustaki,I.andGalbraith,J.(2002)TheAnalysisandInterpretationofMultivariateDataforSocialScientists.London:ChapmanandHall.

Rizopoulos,D.(2006)ltm:AnRpackageforlatentvariablemodellinganditemresponsetheoryanalyses.JournalofStatisticalSoftware,17(5),1–25.URLhttp://www.jstatsoft.org/v17/i05/

Rizopoulos,D.andMoustaki,I.(2008)Generalizedlatentvariablemodelswithnonlineareffects.BritishJournalofMathematicalandStatisticalPsychology,61,415–438.SeeAlso

plot.fscores,gpcm,grm,ltm,rasch,tpmExamples

##FactorScoresfortheRaschmodelfit<-rasch(LSAT)

factor.scores(fit)#EmpiricalBayes

fitted17

##Factorscoresforallsubjectsinthe##originaldatasetLSAT

factor.scores(fit,resp.patterns=LSAT)

##Factorscoresforspecificpatterns,##includingNA󰁜s,canbeobtainedby

factor.scores(fit,resp.patterns=rbind(c(1,0,1,0,1),c(NA,1,0,NA,1)))##Notrun:

##FactorScoresforthetwo-parameterlogisticmodelfit<-ltm(Abortion~z1)

factor.scores(fit,method=\"MI\B=20)#MultipleImputation##FactorScoresforthegradedresponsemodelfit<-grm(Science[c(1,3,4,7)])

factor.scores(fit,resp.patterns=rbind(1:4,c(NA,1,2,3)))##End(Notrun)

fittedFittedValuesforIRTmodel

Description

Computestheexpectedfrequenciesforvectorsofresponsepatterns.Usage

##S3methodforclass󰁜gpcm󰁜

fitted(object,resp.patterns=NULL,

type=c(\"expected\\"marginal-probabilities\\"conditional-probabilities\"),...)##S3methodforclass󰁜grm󰁜

fitted(object,resp.patterns=NULL,

type=c(\"expected\\"marginal-probabilities\\"conditional-probabilities\"),...)##S3methodforclass󰁜ltm󰁜

fitted(object,resp.patterns=NULL,

type=c(\"expected\\"marginal-probabilities\\"conditional-probabilities\"),...)##S3methodforclass󰁜rasch󰁜

fitted(object,resp.patterns=NULL,

18

type=c(\"expected\\"marginal-probabilities\\"conditional-probabilities\"),...)

##S3methodforclass󰁜tpm󰁜

fitted(object,resp.patterns=NULL,

type=c(\"expected\\"marginal-probabilities\\"conditional-probabilities\"),...)Arguments

objectresp.patterns

fitted

anobjectinheritingeitherfromclassgpcm,classgrm,classltm,classrasch,orclasstpm.

amatrixoradata.frameofresponsepatternswithcolumnsdenotingtheitems;ifNULLtheexpectedfrequenciesarecomputedfortheobservedresponsepatterns.

iftype==\"marginal-probabilities\"themarginalprobabilitiesforeach󰀉󰀈p

responsearecomputed;thesearegivenby{i=1Pr(xi=1|z)xi×(1−Pr(xi=1|z))1−xi}p(z)dz,wherexidenotestheithitemandzthelatentvariable.Iftype==\"expected\"theexpectedfrequenciesforeachresponsearecomputed,whicharethemarginalprobabilitiestimesthenumberofsampleunits.Iftype==\"conditional-probabilities\"theconditionalprobabili-tiesforeachresponseanditemarecomputed;thesearePr(xi=1|zˆ),wherezˆistheabilityestimate.

additionalarguments;currentlynoneisused.

type

...Value

anumericmatrixoralistcontainingeithertheresponsepatternsofinterestwiththeirexpectedfrequenciesormarginalprobabilities,iftype==\"expected\"||\"marginal-probabilities\"or

theconditionalprobabilitiesforeachresponsepatternanditem,iftype==\"conditional-probabilities\".Author(s)

DimitrisRizopoulosSeeAlso

residuals.gpcm,residuals.grm,residuals.ltm,residuals.rasch,residuals.tpmExamples

fit<-grm(Science[c(1,3,4,7)])

fitted(fit,resp.patterns=matrix(1:4,nr=4,nc=4))fit<-rasch(LSAT)

fitted(fit,type=\"conditional-probabilities\")

gh19

ghGauss-HermiteQuadraturePoints

Description

TablewithGauss-HermiteQuadraturePoints

GoFGoodnessofFitforRaschModels

Description

PerformsaparametricBootstraptestforRaschandGeneralizedPartialCreditmodels.Usage

GoF.gpcm(object,simulate.p.value=TRUE,B=99,seed=NULL,...)GoF.rasch(object,B=49,...)Arguments

objectanobjectinheritingfromeitherclassgpcmorclassrasch.simulate.p.value

logical;ifTRUE,thereportedp-valueisbasedonaparametricBootstrapap-proach.Otherwisethep-valueisbasedontheasymptoticchi-squareddistribu-tion.Bseed...Details

GoF.gpcmandGoF.raschperformaparametricBootstraptestbasedonPearson’schi-squaredstatisticdefinedas

2p󰀊{O(r)−E(r)}2

,

E(r)r=1whererrepresentsaresponsepattern,O(r)andE(r)representtheobservedandexpectedfrequen-cies,respectivelyandpdenotesthenumberofitems.TheBootstrapapproximationtothereference

distributionispreferablecomparedwiththeordinaryChi-squaredapproximationsincethelatterisnotvalidespeciallyforlargenumberofitems(=>manyresponsepatternswithexpectedfrequenciessmallerthan1).

Inparticular,theBootstraptestisimplementedasfollows:

thenumberofBootstrapsamples.SeeDetailssectionformoreinfo.

theseedtobeusedduringtheparametricBootstrap;ifNULL,arandomseedisused.

additionalarguments;currentlynoneisused.

20

Step0:BasedonobjectcomputetheobservedvalueofthestatisticTobs.

GoF

ˆC(θˆ)),whereθˆaretheMLEsandC(θˆ)Step1:Simulatenewparametervalues,sayθ∗,fromN(θ,

theirlargesamplecovariancematrix.Step2:Usingθ∗simulatenewdata(withthesamedimensionsastheobservedones),fitthegener-alizedpartialcreditortheRaschmodelandbasedonthisfitcalculatethevalueofthestatisticTi.Step3:Repeatsteps1-2Btimesandestimatethep-valueusing[1+

B󰀇i=1

I(Ti>Tobs)]/(B+1).

Furthermore,inGoF.gpcmwhensimulate.p.value=FALSE,thenthep-valueisbasedonthe

asymptoticchi-squareddistribution.Value

AnobjectofclassGoF.gpcmorGoF.raschwithcomponents,TobsBcallp.value

thevalueofthePearson’schi-squaredstatisticfortheobserveddata.theBargumentspecifyingthenumberofBootstrapsamplesused.thematchedcallofobject.thep-valueofthetest.

simulate.p.value

thevalueofsimulate.p.valueargument(returnedonforclassGoF.gpcm).df

thedegreesoffreedomfortheasymptoticchi-squareddistribution(returnedonforclassGoF.gpcm).

Author(s)

DimitrisRizopoulosSeeAlso

person.fit,item.fit,margins,gpcm,raschExamples

##GoFfortheRaschmodelfortheLSATdata:fit<-rasch(LSAT)GoF.rasch(fit)

gpcm21

gpcmGeneralizedPartialCreditModel-PolytomousIRT

Description

FitstheGeneralizedPartialCreditmodelforordinalpolytomousdata,undertheItemResponseTheoryapproach.Usage

gpcm(data,constraint=c(\"gpcm\\"1PL\\"rasch\"),IRT.param=TRUE,

start.val=NULL,na.action=NULL,control=list())Arguments

dataconstraintIRT.paramstart.val

adata.frameoranumericmatrixofmanifestvariables.

acharacterstringspecifyingwhichversionoftheGeneralizedPartialCreditModeltofit.SeeDetailsandExamplesformoreinfo.

logical;ifTRUEthenthecoefficients’estimatesarereportedundertheusualIRTparameterization.SeeDetailsformoreinfo.

alistofstartingvaluesorthecharacterstring\"random\".Ifalist,eachoneofitselementscorrespondstoeachitemandshouldcontainanumericvectorwithinitialvaluesforthethresholdparametersanddiscriminationparameter;evenifconstraint=\"rasch\"orconstraint=\"1PL\",thediscriminationparametershouldbeprovidedforalltheitems.If\"random\",randomstartingvaluesarecomputed.

thena.actiontobeusedondata;defaultNULLthemodelusestheavailablecases,i.e.,ittakesintoaccounttheobservedpartofsampleunitswithmissingvalues(validunderMARmechanismsifthemodeliscorrectlyspecified).anamedlistofcontrolvalueswithcomponents,

iter.qNthenumberofquasi-Newtoniterations.Default150.

GHkthenumberofGauss-Hermitequadraturepoints.Default21.

optimizerwhichoptimizationroutinetouse;optionsare\"optim\"and\"nlminb\

thelatterbeingthedefault.

optimMethodtheoptimizationmethodtobeusedinoptim().Defaultis\"BFGS\".numrDerivwhichnumericalderivativealgorithmtousetoapproximatethe

Hessianmatrix;optionsare\"fd\"forforwarddifferenceapproximationand\"cd\"forcentraldifferenceapproximation.Defaultis\"fd\".

epsHesstepsizetobeusedinthenumericalderivative.Defaultis1e-06.Ifyou

choosenumrDeriv=\"cd\",thenchangethistoalargervalue,e.g.,1e-03or1e-04.

parscaletheparscalecontrolargumentofoptim().Defaultis0.5forall

parameters.

verboselogical;ifTRUEinfoabouttheoptimizationprocedureareprinted.

na.action

control

22Details

gpcm

TheGeneralizedPartialCreditModelisanIRTmodel,thatcanhandleordinalmanifestvariables.ThismodelwasdiscussedbyMasters(1982)anditwasextendedbyMuraki(1992).Themodelisdefinedasfollows

exp

Pik(z)=

mi󰀇r=0

k󰀇c=0

r󰀇∗βi(z−βic)

,

∗)βi(z−βic

exp

c=0

wherePik(z)denotestheprobabilityofrespondingincategorykforitemi,giventhelatentability

∗z,βicaretheitem-categoryparameters,βiisthediscriminationparameter,miisthenumberofcategoriesforitemi,and

0󰀊

βi(z−βic)≡0.

c=0

Ifconstraint=\"rasch\",thenthediscriminationparameterβiisassumedequalforallitems

andfixedatone.Ifconstraint=\"1PL\",thenthediscriminationparameterβiisassumedequalforallitemsbutisestimated.Ifconstraint=\"gpcm\",theneachitemhasitsonediscriminationparameterβithatisestimated.SeeExamplesformoreinfo.

IfIRT.param=FALSE,thenthelinearpredictorisoftheformβiz+βic.

ThefitofthemodelisbasedonapproximatemarginalMaximumLikelihood,usingtheGauss-Hermitequadraturerulefortheapproximationoftherequiredintegrals.Value

Anobjectofclassgpcmwithcomponents,coefficientslog.Lik

convergencehessiancountspatterns

anamedlistwithcomponentstheparametervaluesatconvergenceforeachitem.thelog-likelihoodvalueatconvergence.

theconvergenceidentifierreturnedbyoptim()ornlminb().theapproximateHessianmatrixatconvergence.

thenumberoffunctionandgradientevaluationsusedbythequasi-Newtonal-gorithm.

alistwithtwocomponents:(i)X:anumericmatrixthatcontainstheobservedresponsepatterns,and(ii)obs:anumericvectorthatcontainstheobservedfrequenciesforeachobservedresponsepattern.

alistwithtwocomponentsusedintheGauss-Hermiterule:(i)Z:anumericmatrixthatcontainstheabscissas,and(ii)GHw:anumericvectorthatcontainsthecorrespondingweights.

themaximumabsolutevalueofthescorevectoratconvergence.thevalueoftheconstraintargument.thevalueoftheIRT.paramargument.acopyoftheresponsedatamatrix.

thevaluesusedinthecontrolargument.thevalueofthena.actionargument.thematchedcall.

GH

max.sc

constraintIRT.paramX

controlna.actioncall

gpcmWarning

23

IncasetheHessianmatrixatconvergenceisnotpositivedefinitetrytore-fitthemodelbyspecifyingthestartingvaluesorusingstart.val=\"random\".Note

gpcm()canalsohandlebinaryitemsandcanbeusedinsteadofraschandltmthoughitislessefficient.However,gpcm()canhandleamixofdichotomousandpolytomousitemsthatneitherraschnorltmcan.Author(s)

DimitrisRizopoulosReferences

Masters,G.(1982).ARaschmodelforpartialcreditscoring.Psychometrika,47,149–174.Muraki,E.(1992).Ageneralizedpartialcreditmodel:applicationofanEMalgorithm.AppliedPsychologicalMeasurement,16,159–176.SeeAlso

coef.gpcm,fitted.gpcm,summary.gpcm,anova.gpcm,plot.gpcm,vcov.gpcm,GoF.gpcm,margins,factor.scoresExamples

##TheGeneralizedPartialCreditModelfortheSciencedata:gpcm(Science[c(1,3,4,7)])

##TheGeneralizedPartialCreditModelfortheSciencedata,##assumingequaldiscriminationparametersacrossitems:gpcm(Science[c(1,3,4,7)],constraint=\"1PL\")

##TheGeneralizedPartialCreditModelfortheSciencedata,##assumingequaldiscriminationparametersacrossitems##fixedat1:

gpcm(Science[c(1,3,4,7)],constraint=\"rasch\")

##moreexamplescanbefoundat:

##http://wiki.r-project.org/rwiki/doku.php?id=packages:cran:ltm#sample_analyses

24grm

grmGradedResponseModel-PolytomousIRT

Description

FitstheGradedResponsemodelforordinalpolytomousdata,undertheItemResponseTheoryapproach.Usage

grm(data,constrained=FALSE,IRT.param=TRUE,Hessian=FALSE,

start.val=NULL,na.action=NULL,control=list())Arguments

dataconstrainedIRT.paramHessianstart.val

adata.frame(thatwillbeconvertedtoanumericmatrixusingdata.matrix())oranumericmatrixofmanifestvariables.

logical;ifTRUEthemodelwithequaldiscriminationparametersacrossitemsisfitted.SeeExamplesformoreinfo.

logical;ifTRUEthenthecoefficients’estimatesarereportedundertheusualIRTparameterization.SeeDetailsformoreinfo.logical;ifTRUEtheHessianmatrixiscomputed.

alistofstartingvaluesorthecharacterstring\"random\".Ifalist,eachoneofitselementscorrespondstoeachitemandshouldcontainanumericvectorwithinitialvaluesfortheextremityparametersanddiscriminationparameter;evenifconstrained=TRUEthediscriminationparametershouldbeprovidedforalltheitems.If\"random\"randomstartingvaluesarecomputed.

thena.actiontobeusedondata;defaultNULLthemodelusestheavailablecases,i.e.,ittakesintoaccounttheobservedpartofsampleunitswithmissingvalues(validunderMARmechanismsifthemodeliscorrectlyspecified)..alistofcontrolvalues,

iter.qNthenumberofquasi-Newtoniterations.Default150.

GHkthenumberofGauss-Hermitequadraturepoints.Default21.

methodtheoptimizationmethodtobeusedinoptim().Default\"BFGS\".verboselogical;ifTRUEinfoabouttheoptimizationprocedureareprinted.digits.abbrvnumericvalueindicatingthenumberofdigitsusedinabbreviating

theItem’snames.Default6.

Details

TheGradedResponseModelisatypeofpolytomousIRTmodel,specificallydesignedforordinalmanifestvariables.ThismodelwasfirstdiscussedbySamejima(1969)anditismainlyusedincaseswheretheassumptionofordinallevelsofresponseoptionsisplausible.

na.action

control

grm

Themodelisdefinedasfollows

log󰀃γik1−γik

󰀄

=βiz−βik,

25

whereγikdenotesthecumulativeprobabilityofaresponseincategorykthorlowertotheithitem,giventhelatentabilityz.Ifconstrained=TRUEitisassumedthatβi=βforalli.

IfIRT.param=TRUE,thentheparametersestimatesarereportedundertheusualIRTparameteri-zation,i.e.,󰀃󰀄

γik∗

log=βi(z−βik),

1−γik

whereβik=βik/βi.

ThefitofthemodelisbasedonapproximatemarginalMaximumLikelihood,usingtheGauss-Hermitequadraturerulefortheapproximationoftherequiredintegrals.Value

Anobjectofclassgrmwithcomponents,coefficientslog.Likconvergencehessiancountspatterns

anamedlistwithcomponentstheparametervaluesatconvergenceforeachitem.

Thesearealwaystheestimatesofβik,βiparameters,evenifIRT.param=TRUE.thelog-likelihoodvalueatconvergence.theconvergenceidentifierreturnedbyoptim().

theapproximateHessianmatrixatconvergencereturnedbyoptim();returnedonlyifHessian=TRUE.

thenumberoffunctionandgradientevaluationsusedbythequasi-Newtonal-gorithm.

alistwithtwocomponents:(i)X:anumericmatrixthatcontainstheobservedresponsepatterns,and(ii)obs:anumericvectorthatcontainstheobservedfrequenciesforeachobservedresponsepattern.

alistwithtwocomponentsusedintheGauss-Hermiterule:(i)Z:anumericmatrixthatcontainstheabscissas,and(ii)GHw:anumericvectorthatcontainsthecorrespondingweights.

themaximumabsolutevalueofthescorevectoratconvergence.thevalueoftheconstrainedargument.thevalueoftheIRT.paramargument.acopyoftheresponsedatamatrix.thevaluesusedinthecontrolargument.thevalueofthena.actionargument.thematchedcall.

GH

max.scconstrainedIRT.paramXcontrolna.actioncallWarning

IncasetheHessianmatrixatconvergenceisnotpositivedefinitetrytore-fitthemodel,usingstart.val=\"random\".

26Note

grm

grm()returnstheparameterestimatessuchthatthediscriminationparameterforthefirstitemβ1ispositive.

Whenthecoefficients’estimatesarereportedundertheusualIRTparameterization(i.e.,IRT.param=TRUE),theirstandarderrorsarecalculatedusingtheDeltamethod.

grm()canalsohandlebinaryitems,whichshouldbecodedas‘1,2’insteadof‘0,1’.

Somepartsofthecodeusedforthecalculationofthelog-likelihoodandthescorevectorhavebeenbasedonpolr()frompackageMASS.

Author(s)

DimitrisRizopoulos

References

Baker,F.andKim,S-H.(2004)ItemResponseTheory,2nded.NewYork:MarcelDekker.Samejima,F.(1969).Estimationoflatentabilityusingaresponsepatternofgradedscores.Psy-chometrikaMonographSupplement,34,100–114.

Rizopoulos,D.(2006)ltm:AnRpackageforlatentvariablemodellinganditemresponsetheoryanalyses.JournalofStatisticalSoftware,17(5),1–25.URLhttp://www.jstatsoft.org/v17/i05/SeeAlso

coef.grm,fitted.grm,summary.grm,anova.grm,plot.grm,vcov.grm,margins,factor.scoresExamples

##TheGradedResponsemodelfortheSciencedata:grm(Science[c(1,3,4,7)])

##TheGradedResponsemodelfortheSciencedata,

##assumingequaldiscriminationparametersacrossitems:grm(Science[c(1,3,4,7)],constrained=TRUE)

##TheGradedResponsemodelfortheEnvironmentdatagrm(Environment)

information27

informationAreaundertheTestorItemInformationCurves

Description

ComputestheamountoftestoriteminformationforafittedIRTmodel,inaspecifiedrange.Usage

information(object,range,items=NULL,...)Arguments

objectrangeitems...Details

TheamountofinformationiscomputedastheareaundertheItemorTestInformationCurveinthespecifiedinterval,usingintegrate().Value

Alistofclassinformationwithcomponents,InfoRangeInfoTotalPropRangerangeitemscallAuthor(s)

DimitrisRizopoulosSeeAlso

plot.gpcm,plot.grm,plot.ltm,plot.rasch

theamountofinformationinthespecifiedinterval.

thetotalamountofinformation;typicallythisiscomputedastheamountofinformationintheinterval(−10,10).

theproportionofinformationinthespecifiedrange,i.e.,\"Infoinrange\"/\"TotalInfo\".thevalueofrangeargument.thevalueofitemsargument.thematchedcallforobject.

anobjectinheritingfromeitherclassgpcm,classgrm,classltm,classraschorclasstpm.

anumericintervalforwhichthetestinformationshouldbecomputed.theitemsforwhichtheinformationshouldbecomputed;thedefaultNULLcor-respondstoalltheitems,whichisequivalenttothetestinformation.extraargumentspassedtointegrate().

28Examples

fit<-rasch(LSAT)

information(fit,c(-2,0))

information(fit,c(0,2),items=c(3,5))

item.fit

item.fitItem-FitStatisticsandP-values

Description

Computationofitemfitstatisticsforltm,raschandtpmmodels.Usage

item.fit(object,G=10,FUN=median,

simulate.p.value=FALSE,B=100)Arguments

objectGFUN

amodelobjectinheritingeitherfromclassltm,classraschorclasstpm.eitheranumberoranumericvector.Ifanumber,thenitdenotesthenumberofcategoriessampleunitsaregroupedaccordingtotheirabilityestimates.

afunctiontosummarizetheabilityestimatewitheachgroup(e.g.,median,mean,etc.).

simulate.p.value

logical;ifTRUE,thentheMonteCarloproceduredescribedintheDetailssectionisusedtoapproximatethethedistributionoftheitem-fitstatisticunderthenullhypothesis.BDetails

Theitem-fitstatisticcomputedbyitem.fit()hastheform:

G󰀊Nj(Oij−Eij)2

,

E(1−E)ijijj=1

thenumberofreplicationsintheMonteCarloprocedure.

whereiistheitem,jistheintervalcreatedbygroupingsampleunitsonthebasisoftheirability

estimates,Gisthenumberofsampleunitsgroupings(i.e.,Gargument),Njisthenumberofsampleunitswithabilityestimatesfallinginagivenintervalj,Oijistheobservedproportionofkeyedresponsesonitemiforintervalj,andEijistheexpectedproportionofkeyedresponsesonitemiforintervaljbasedontheIRTmodel(i.e.,object)evaluatedattheabilityestimatez∗withintheinterval,withz∗denotingtheresultofFUNappliedtotheabilityestimatesingroupj.

item.fit29

Ifsimulate.p.value=FALSE,thenthep-valuesarecomputedassumingachi-squareddistri-butionwithdegreesoffreedomequaltothenumberofgroupsGminusthenumberofestimatedparameters.Ifsimulate.p.value=TRUE,aMonteCarloprocedureisusedtoapproximatethedistributionoftheitem-fitstatisticunderthenullhypothesis.Inparticular,thefollowingstepsarereplicatedBtimes:

Step1:Simulateanewdata-setofdichotomousresponsesundertheassumedIRTmodel,using

ˆintheoriginaldata-set,extractedfromobject.themaximumlikelihoodestimatesθStep2:Fitthemodeltothesimulateddata-set,extractthemaximumlikelihoodestimatesθ∗and

computetheabilityestimatesz∗foreachresponsepattern.Step3:Forthenewdata-set,andusingz∗andθ∗,computethevalueoftheitem-fitstatistic.DenotebyTobsthevalueoftheitem-fitstatisticfortheoriginaldata-set.Thenthep-valueisapproximatedaccordingtotheformula

󰀅󰀆B󰀊1+I(Tb≥Tobs)/(1+B),

b=1

whereI(.)denotestheindicatorfunction,andTbdenotesthevalueoftheitem-fitstatisticinthebth

simulateddata-set.Value

AnobjectofclassitemFitisalistwithcomponents,Tobsp.values

anumericvectorwithitem-fitstatistics.

anumericvectorwiththecorrespondingp-values.

GthevalueoftheGargument.simulate.p.value

thevalueofthesimulate.p.valueargument.BcallAuthor(s)

DimitrisRizopoulosReferences

Reise,S.(1990)Acomparisonofitem-andperson-fitmethodsofassessingmodel-datafitinIRT.AppliedPsychologicalMeasurement,14,127–137.

Yen,W.(1981)Usingsimulationresultstochoosealatenttraitmodel.AppliedPsychologicalMeasurement,5,245–262.SeeAlso

person.fit,margins,GoF.gpcm,GoF.rasch

thevalueoftheBargument.acopyofthematchedcallofobject.

30Examples

#item-fitstatisticsfortheRaschmodel#fortheAbortiondata-setitem.fit(rasch(Abortion))

#Yen󰁜sQ1item-fitstatistic(i.e.,10latentabilitygroups;the#meanabilityineachgroupisusedtocomputefittedproportions)#forthetwo-parameterlogisticmodelfortheLSATdata-setitem.fit(ltm(LSAT~z1),FUN=mean)

LSAT

LSATTheLawSchoolAdmissionTest(LSAT),SectionVI

Description

TheLSATisaclassicalexampleineducationaltestingformeasuringabilitytraits.Thistestwasdesignedtomeasureasinglelatentabilityscale.Format

Adataframewiththeresponsesof1000individualsto5questions.Source

ThisLSATexampleisapartofadatasetgiveninBockandLieberman(1970).References

Bartholomew,D.,Steel,F.,Moustaki,I.andGalbraith,J.(2002)TheAnalysisandInterpretationofMultivariateDataforSocialScientists.London:ChapmanandHall.

Bock,R.andLieberman,M.(1970)Fittingaresponsemodelforndichotomouslyscoreditems.Psychometrika,35,179–197.Examples

##DescriptivestatisticsforLSATdatadsc<-descript(LSAT)dsc

plot(dsc)

ltm31

ltmLatentTraitModel-LatentVariableModelforBinaryData

Description

FitalatenttraitmodelundertheItemResponseTheory(IRT)approach.Usage

ltm(formula,constraint=NULL,IRT.param,start.val,

na.action=NULL,control=list())Arguments

formula

atwo-sidedformulaprovidingtheresponsesdatamatrixanddescribingthela-tentstructure.Intheleftsideofformulaeitheradata.frame(thatwillbeconvertedtoanumericmatrixusingdata.matrix())oranumericmatrixofmanifestvariablesmustbesupplied.Intherightsideofformulaonlytwolatentvariablesareallowedwithcodenamesz1,z2.Interactionandquadratictermscanalsobeused(seeDetailsandExamplesformoreinfo).

athree-columnnumericmatrixwithatmostpq−1rows(wherepisthenumberofitemsandqthenumberoflatentcomponentsplustheintercept),specifyingfixed-valueconstraints.Thefirstcolumnrepresentstheitem(i.e.,1denotesthefirstitem,2thesecond,etc.),thesecondcolumnrepresentsthecomponentofthelatentstructure(i.e.,1denotestheinterceptβ0i,2theloadingsofthefirstfactorβ1i,etc.)andthethirdcolumndenotesthevalueatwhichthecorrespondingparametershouldbefixed.SeeDetailsandExamplesformoreinfo.

logical;ifTRUEthenthecoefficients’estimatesforthetwo-parameterlogisticmodelarereportedundertheusualIRTparameterization.SeeDetailsformoreinfo.

thecharacterstring\"random\"oranumericmatrixsupplyingstartingvalueswithprowsandqcolumns,withpdenotingthenumberofitems,andqdenotingthenumberoftermsintheright-handsideofformula.IfNULLstartingvaluesareautomaticallycomputed.If\"random\randomstartingvaluesareused.Ifama-trix,thendependingonthelatentstructurespecifiedinformula,thefirstcolumnshouldcontainβ0i,thesecondβ1i,thethirdβ2i,andtheremaingcolumnsβnl,i(seeDetails).

thena.actiontobeusedonthedataframeintheleftsideofformula.Incaseofmissingdata,ifna.action=NULLthemodelusestheavailablecases,i.e.,ittakesintoaccounttheobservedpartofsampleunitswithmissingvalues(validunderMARmechanismsifthemodeliscorrectlyspecified).Ifyouwanttoapplyacompletecaseanalysisthenusena.action=na.exclude.alistofcontrolvalues,

iter.emthenumberofEMiterations.Default40.

iter.qNthenumberofquasi-Newtoniterations.Default150.

constraint

IRT.param

start.val

na.action

control

32

GHkthenumberofGauss-Hermitequadraturepoints.Default15.

methodtheoptimizationmethodtobeusedinoptim().Default\"BFGS\".verboselogical;ifTRUEinfoabouttheoptimizationprocedureareprinted.

Details

ltm

Thelatenttraitmodelistheanalogueofthefactoranalysismodelforbinaryobserveddata.Themodelassumesthatthedependenciesbetweentheobservedresponsevariables(knownasitems)canbeinterpretedbyasmallnumberoflatentvariables.ThemodelformulationisundertheIRTapproach;inparticular,󰀃󰀄

πi

log=β0i+β1iz1+β2iz2,

1−πiwhereπiisthetheprobabilityofapositiveresponseintheithitem,βi0istheeasinessparameter,βij(j=1,2)arethediscriminationparametersandz1,z2denotethetwolatentvariables.Theusualformofthelatenttraitmodelassumeslinearlatentvariableeffects(BartholomewandKnott,1999;MoustakiandKnott,2000).ltm()fitsthelinearone-andtwo-factormodelsbutalsoprovidesextensionsdescribedbyRizopoulosandMoustaki(2006)toincludenonlinearlatentvariableeffects.Theseareincorporatedinthelinearpredictorofthemodel,i.e.,

󰀃󰀄

πit

log=β0i+β1iz1+β2iz2+βnlf(z1,z2),

1−πi

2

wheref(z1,z2)isafunctionofz1andz2(e.g.,f(z1,z2)=z1z2,f(z1,z2)=z1,etc.)andβnlisamatrixofnonlineartermsparameters(lookalsoattheExamples).

IfIRT.param=TRUE,thentheparametersestimatesforthetwo-parameterlogisticmodel(i.e.,themodelwithonefactor)arereportedundertheusualIRTparameterization,i.e.,

󰀄󰀃πi∗

=β1i(z−β0logi).1−πiThelineartwo-factormodelisunidentifiedunderorthogonalrotationsonthefactors’space.To

achieveidentifiabilityyoucanfixthevalueofoneloadingusingtheconstraintargument.Theparametersareestimatedbymaximizingtheapproximatemarginallog-likelihoodundertheconditionalindependenceassumption,i.e.,conditionallyonthelatentstructuretheitemsareinde-pendentBernoullivariatesunderthelogitlink.TherequiredintegralsareapproximatedusingtheGauss-Hermiterule.Theoptimizationprocedureusedisahybridalgorithm.TheprocedureinitiallyusesamoderatenumberofEMiterations(seecontrolargumentiter.em)andthenswitchestoquasi-Newton(seecontrolargumentsmethodanditer.qN)iterationsuntilconvergence.Value

Anobjectofclassltmwithcomponents,coefficientslog.Likconvergence

amatrixwiththeparametervaluesatconvergence.Thesearealwaystheesti-matesofβli,l=0,1,...parameters,evenifIRT.param=TRUE.thelog-likelihoodvalueatconvergence.theconvergenceidentifierreturnedbyoptim().

ltm

hessiancountspatterns

theapproximateHessianmatrixatconvergencereturnedbyoptim().

33

thenumberoffunctionandgradientevaluationsusedbythequasi-Newtonal-gorithm.

alistwithtwocomponents:(i)X:anumericmatrixthatcontainstheobservedresponsepatterns,and(ii)obs:anumericvectorthatcontainstheobservedfrequenciesforeachobservedresponsepattern.

alistwithtwocomponentsusedintheGauss-Hermiterule:(i)Z:anumericmatrixthatcontainstheabscissas,and(ii)GHw:anumericvectorthatcontainsthecorrespondingweights.

themaximumabsolutevalueofthescorevectoratconvergence.alistdescribingthelatentstructure.acopyoftheresponsedatamatrix.thevaluesusedinthecontrolargument.thevalueoftheIRT.paramargument.

if(!is.null(constraint)),thenitcontainsthevalueoftheconstraintar-gument.thematchedcall.

GH

max.scltstXcontrolIRT.paramconstraintcallWarning

IncasetheHessianmatrixatconvergenceisnotpositivedefinite,trytore-fitthemodel;ltm()willusenewrandomstartingvalues.

Theinclusionofnonlinearlatentvariableeffectsproducesmorecomplexlikelihoodsurfaceswhichmightpossessanumberoflocalmaxima.Toensurethatthemaximumlikelihoodvaluehasbeenreachedre-fitthemodelanumberoftimes(simulationsshowedthatusually10timesareadequatetoensureglobalconvergence).

ConversionoftheparameterestimatestotheusualIRTparameterizationworksonlyforthetwo-parameterlogisticmodel.Note

Inthecaseoftheone-factormodel,theoptimizationalgorithmworksundertheconstraintthatthediscriminationparameterofthefirstitemβ11isalwayspositive.Ifyouwishtochangeitssign,theninthefittedmodel,saym,usem$coef[,2]<--m$coef[,2].

Whenthecoefficients’estimatesarereportedundertheusualIRTparameterization(i.e.,IRT.param=TRUE),theirstandarderrorsarecalculatedusingtheDeltamethod.Author(s)

DimitrisRizopoulos

34References

Baker,F.andKim,S-H.(2004)ItemResponseTheory,2nded.NewYork:MarcelDekker.

ltm

Bartholomew,D.andKnott,M.(1999)LatentVariableModelsandFactorAnalysis,2nded.Lon-don:Arnold.

Bartholomew,D.,Steel,F.,Moustaki,I.andGalbraith,J.(2002)TheAnalysisandInterpretationofMultivariateDataforSocialScientists.London:ChapmanandHall.

Moustaki,I.andKnott,M.(2000)Generalizedlatenttraitmodels.Psychometrika,65,391–411.Rizopoulos,D.(2006)ltm:AnRpackageforlatentvariablemodellinganditemresponsetheoryanalyses.JournalofStatisticalSoftware,17(5),1–25.URLhttp://www.jstatsoft.org/v17/i05/

Rizopoulos,D.andMoustaki,I.(2008)Generalizedlatentvariablemodelswithnonlineareffects.BritishJournalofMathematicalandStatisticalPsychology,61,415–438.

SeeAlso

coef.ltm,fitted.ltm,summary.ltm,anova.ltm,plot.ltm,vcov.ltm,item.fit,person.fit,margins,factor.scoresExamples

########

Thetwo-parameterlogisticmodelfortheWIRSdatawiththeconstraintthat(i)theeasinessparameterforthe1stitemequals1and(ii)thediscriminationparameterforthe6thitemequals-0.5

ltm(WIRS~z1,constr=rbind(c(1,1,1),c(6,2,-0.5)))##One-factorandaquadraticterm##usingtheMobilitydataltm(Mobility~z1+I(z1^2))

##Two-factormodelwithaninteractionterm##usingtheWIRSdataltm(WIRS~z1*z2)

##Thetwo-parameterlogisticmodelfortheAbortiondata##with20quadraturepointsand20EMiterations;

##reportresultsundertheusualIRTparameterization

ltm(Abortion~z1,control=list(GHk=20,iter.em=20))

margins35

marginsFitofthemodelonthemargins

Description

Checksthefitonthetwo-andthree-waymarginsforgrm,ltm,raschandtpmobjects.Usage

margins(object,...)

##S3methodforclass󰁜gpcm󰁜

margins(object,type=c(\"two-way\\"three-way\"),rule=3.5,...)##S3methodforclass󰁜grm󰁜

margins(object,type=c(\"two-way\\"three-way\"),rule=3.5,...)##S3methodforclass󰁜ltm󰁜

margins(object,type=c(\"two-way\\"three-way\"),rule=3.5,

nprint=3,...)##S3methodforclass󰁜rasch󰁜

margins(object,type=c(\"two-way\\"three-way\"),rule=3.5,

nprint=3,...)##S3methodforclass󰁜tpm󰁜

margins(object,type=c(\"two-way\\"three-way\"),rule=3.5,

nprint=3,...)Arguments

objecttyperulenprint...Details

Ratherthanlookingatthewholesetofresponsepatterns,wecanlookatthetwo-andthree-waymargins.Fortheformer,weconstructthe2×2contingencytablesobtainedbytakingthevariablestwoatatime.Comparingtheobservedandexpectedtwo-waymarginsisanalogoustocomparingtheobservedandexpectedcorrelationswhenjudgingthefitofafactoranalysismodel.ForBernoulliandOrdinalvariates,thecomparisonismadeusingthesocalledChi-squaredresiduals.Asarule

anobjectinheritingeitherfromclassgpcm,classgrm,classltmorclassrasch.thetypeofmarginstobeused.SeeDetailsformoreinfo.

theruleofthumbusedindeterminingtheindicativegoodness-of-fit.

anumericvaluedeterminingthenumberofmarginswiththelargestChi-squaredresidualstobeprinted;onlyforltmandraschobjects.additionalargument;currentlynoneisused.

36margins

ofthumbresidualsgreaterthan3.5areindicativeofpoorfit.Foramorestrictruleofthumbusetheruleargument.Theanalogousprocedureisfollowedforthethree-waymargins.

Value

Anobjectofeitherclassmargins.ltmifobjectinheritsfromclassltm,classraschorclasstpm,oranobjectofclassmargins.grmifobjectinheritsfromclassgrm,withcomponents,margins

formargins.ltmisanarraycontainingthevaluesofchi-squaredresiduals;formargins.gpcmandmargins.grmisalistoflengtheitherthenumberofallpos-siblepairsorallpossibletripletsofitems,containingtheobservedandexpectedfrequencies,thevaluesofchi-squaredresiduals,thevalueofthetotalresidualandthevalueoftheruleofthumbtimestheproductofthenumberofcategoriesoftheitemsunderconsideration.thetypeofmarginsthatwerecalculated.

thevalueofthenprintargument;returnedonlyfrommargins.ltm.

allpossibletwo-orthree-waycombinationsoftheitems;returnedonlyfrommargins.ltm.

thevalueoftheruleargument;returnedonlyfrommargins.ltm.thenumberofitemsinobject;returnedonlyfrommargins.grm.thenamesofitemsinobject;returnedonlyfrommargins.grm.acopyofthematchedcallofobject.

typenprintcombsrulenitemsnamescallAuthor(s)

DimitrisRizopoulosReferences

Bartholomew,D.(1998)Scalingunobservableconstructsinsocialscience.AppliedStatistics,47,1–13.

Bartholomew,D.andKnott,M.(1999)LatentVariableModelsandFactorAnalysis,2nded.Lon-don:Arnold.

Bartholomew,D.,Steel,F.,Moustaki,I.andGalbraith,J.(2002)TheAnalysisandInterpretationofMultivariateDataforSocialScientists.London:ChapmanandHall.

Rizopoulos,D.(2006)ltm:AnRpackageforlatentvariablemodellinganditemresponsetheoryanalyses.JournalofStatisticalSoftware,17(5),1–25.URLhttp://www.jstatsoft.org/v17/i05/SeeAlso

person.fit,item.fit,GoF.rasch,

MobilityExamples

##Two-andThree-wayresidualsfortheRaschmodelfit<-rasch(LSAT)margins(fit)

margins(fit,\"three\")

##Two-andThree-wayresidualsfortheone-factormodelfit<-ltm(WIRS~z1)margins(fit)

margins(fit,\"three\")

##Two-andThree-wayresidualsforthegradedresponsemodelfit<-grm(Science[c(1,3,4,7)])margins(fit)

margins(fit,\"three\")

37

MobilityWomen’sMobility

Description

Aruralsubsampleof8445womenfromtheBangladeshFertilitySurveyof1989.Format

Thedimensionofinterestiswomen’smobilityofsocialfreedom.Womenwereaskedwhethertheycouldengageinthefollowingactivitiesalone(1=yes,0=no):Item1Gotoanypartofthevillage/town/city.Item2Gooutsidethevillage/town/city.Item3Talktoamanyoudonotknow.Item4Gotoacinema/culturalshow.Item5Goshopping.

Item6Gotoacooperative/mothers’club/otherclub.Item7Attendapoliticalmeeting.Item8Gotoahealthcentre/hospital.Source

BangladeshFertilitySurveyof1989(HuqandCleland,1990).

38References

mult.choice

Bartholomew,D.,Steel,F.,Moustaki,I.andGalbraith,J.(2002)TheAnalysisandInterpretationofMultivariateDataforSocialScientists.London:ChapmanandHall.

Huq,N.andCleland,J.(1990)BangladeshFertilitySurvey,1989.Dhaka:NationalInstituteofPopulationResearchandTraining(NIPORT).Examples

##DescriptivestatisticsforMobilitydatadescript(Mobility)

mult.choiceMultipleChoiceItemstoBinaryResponses

Description

Itconvertsmultiplechoiceitemstoamatrixofbinaryresponses.Usage

mult.choice(data,correct)Arguments

datacorrectValue

amatrixof0/1valuesindicatingwrong/correctanswers.Author(s)

DimitrisRizopoulosExamples

dat<-data.frame(It1=sample(4,

It2=sample(4,It3=sample(5,It4=sample(5,It5=sample(4,It6=sample(5,

dat[]<-lapply(dat,function(x)crct<-c(3,2,5,3,4,5)

100,TRUE),100,TRUE),100,TRUE),100,TRUE),100,TRUE),100,TRUE))

{x[sample(100,4)]<-NA;x})

amatrixoradata.framecontainingthemanifestvariablesascolumns.avectoroflengthncol(data)withthecorrectresponses.

person.fit

####################mult.choice(dat,crct)

39

person.fitPerson-FitStatisticsandP-values

Description

Computationofpersonfitstatisticsforltm,raschandtpmmodels.Usage

person.fit(object,alternative=c(\"less\\"greater\\"two.sided\"),

resp.patterns=NULL,FUN=NULL,simulate.p.value=FALSE,B=1000)Arguments

objectalternativeresp.patternsFUN

amodelobjectinheritingeitherfromclassltm,classraschorclasstpm.thealternativehypothesis;seeDetailsformoreinfo.

amatrixoradata.frameofresponsepatternswithcolumnsdenotingtheitems;ifNULLthepersonfitstatisticsarecomputedfortheobservedresponsepatterns.afunctionwiththreeargumentscalculatingauser-definedperson-fitstatistic.Thefirstargumentmustbeanumericmatrixof(0,1)responsepatterns.Thesecondargumentmustbeanumericvectoroflengthequaltothenumberofrowsofthefirstargument,providingtheabilityestimatesforeachresponsepattern.Thethirdargumentmustbeanumericmatrixwithnumberofrowsequaltothenumberofitems,providingtheIRTmodelparameters.Forltmandraschobjects,thisshouldbeatwo-columnmatrix,wherethefirstcolumncontainstheeasinessandthesecondonethediscriminationparameters(i.e.,theadditiveparameterizationisassumed,whichhastheformβi0+βi1z,whereβi0istheeasinessandβi1thediscriminationparameterfortheithitem).FortpmobjectsthefirstcolumnofthethirdargumentofFUNshouldcontainthelogit(i.e.,useqlogis())oftheguessingparameters,thesecondcolumntheeasiness,andthethirdcolumnthediscriminationparameters.Thefunctionshouldreturnanumericvectoroflengthequaltothenumberofresponsepatterns,containingthevaluesoftheuser-definedperson-fitstatistics.

simulate.p.value

logical;ifTRUE,thentheMonteCarloproceduredescribedintheDetailssectionisusedtoapproximatethethedistributionoftheperson-fitstatistic(s)underthenullhypothesis.B

thenumberofreplicationsintheMonteCarloprocedure.

40Details

person.fit

Thestatisticscalculatedbydefault(i.e.,ifFUN=NULL)byperson.fit()aretheL0statisticofLevineandRubin(1979)anditsstandardizedversionLzproposedbyDrasgowetal.(1985).Ifsimulate.p.value=FALSE,thep-valuesarecalculatedfortheLzassumingastandardnormaldistributionforthestatisticunderthenull.Ifsimulate.p.value=TRUE,aMonteCarloprocedureisusedtoapproximatethedistributionoftheperson-fitstatistic(s)underthenullhypothesis.Inparticular,thefollowingstepsarereplicatedBtimesforeachresponsepattern:

Step1:Simulateanewabilityestimate,sayz∗,fromanormaldistributionwithmeantheability

estimateoftheresponsepatternunderthefittedmodel(i.e.,object),andstandarddeviationthestandarderroroftheabilityestimate,asreturnedbythefactor.scoresfunction.Step2:SimulateanewresponsepatternofdichotomousitemsundertheassumedIRTmodel,using

z∗andthemaximumlikelihoodestimatesunderobject.Step4:Forthenewresponsepatternandusingz∗andtheMLEs,computethevaluesoftheperson-fitstatistic.DenotebyTobsthevalueoftheperson-fitstatisticfortheoriginaldata-set.Thenthep-valueisapproximatedaccordingtotheformula

󰀆󰀅B󰀊

I(Tb≤Tobs)/(1+B),1+

b=1

ifalternative=\"less\",

󰀅1+

ifalternative=\"greater\",or

󰀅

1+

B󰀊b=1

󰀆

I(Tb≥Tobs)/(1+B),

B󰀊b=1

󰀆

I(|Tb|≥|Tobs|)/(1+B),

ifalternative=\"two.sided\",whereTbdenotesthevalueoftheperson-fitstatisticinthebth

simulateddata-set,I(.)denotestheindicatorfunction,and|.|denotestheabsolutevalue.FortheLzstatistic,negativevalues(i.e.,alternative=\"less\")indicateresponsepatternsthatareun-likely,giventhemeasurementmodelandtheabilityestimate.Positivevalues(i.e.,alternative=\"greater\")indicatethattheexaminee’sresponsepatternismoreconsistentthantheprobabilisticIRTmodelexpected.Finally,whenalternative=\"two.sided\"boththeabovesettingsarecaptured.

Thissimulationschemeexplicitlyaccountsforthefactthatabilityvaluesareestimated,bydrawingfromtheirlargesampledistribution.Strictlyspeaking,drawingz∗fromanormaldistributionisnottheoreticallyappropriate,sincetheposteriordistributionforthelatentabilitiesisnotnormal.However,thenormalityassumptionwillworkreasonablywell,especiallywhenalargenumberofitemsisconsidered.Value

AnobjectofclasspersFitisalistwithcomponents,

person.fit

resp.patternsTobsp.valuesstatisticFUN

alternativeBcallAuthor(s)

DimitrisRizopoulosReferences

theresponsepatternsforwhichthefitstatisticshavebeencomputed.anumericmatrixwithperson-fitstatisticsforeachresponsepattern.anumericmatrixwiththecorrespondingp-values.thevalueofthestatisticargument.thevalueoftheFUNargument.

thevalueofthealternativeargument.thevalueoftheBargument.acopyofthematchedcallofobject.

41

Drasgow,F.,Levine,M.andWilliams,E.(1985)Appropriatenessmeasurementwithpolychoto-mousitemresponsemodelsandstandardizedindices.BritishJournalofMathematicalandStatis-ticalPsychology,38,67–86.

Levine,M.andRubin,D.(1979)Measuringtheappropriatenessofmultiple-choicetestscores.JournalofEducationalStatistics,4,269–290.

Meijer,R.andSijtsma,K.(2001)Methodologyreview:Evaluatingpersonfit.AppliedPsychologi-calMeasurement,25,107–135.

Reise,S.(1990)Acomparisonofitem-andperson-fitmethodsofassessingmodel-datafitinIRT.AppliedPsychologicalMeasurement,14,127–137.SeeAlso

item.fit,margins,GoF.gpcm,GoF.raschExamples

#person-fitstatisticsfortheRaschmodel#fortheAbortiondata-setperson.fit(rasch(Abortion))

#person-fitstatisticsforthetwo-parameterlogisticmodel#fortheLSATdata-set

person.fit(ltm(LSAT~z1),simulate.p.value=TRUE,B=100)

42plotdescript

plotdescriptDescriptiveStatisticsPlotmethod

Description

Theplotmethodfordescriptobjectscurrentlyworksfordichotomousresponsepatterns,andproducesthexy-plotofthetotalscoreversustheproportionofcorrectresponsesforeachitem.Usage

##S3methodforclass󰁜descript󰁜

plot(x,items=NULL,includeFirstLast=FALSE,xlab,ylab,...)

Arguments

xitems

anobjectinheritingfromclassdescript.anumericvectorindicatingwhichitemstoplot.

includeFirstLast

logical;ifTRUEthefirstandlasttotalscorescategoriesareincluded.xlab,ylab...Author(s)

DimitrisRizopoulosSeeAlso

descriptExamples

##DescriptivesforWIRSdata:dsc<-descript(WIRS)dsc

plot(dsc,includeFirstLast=TRUE,type=\"b\lty=1,pch=1:6)

legend(\"topleft\names(WIRS),pch=1:6,col=1:6,lty=1,bty=\"n\")

characterstringoranexpression;seetitle.extragraphicalparameterstobepassedtomatplot().

plotfscores43

plotfscoresFactorScores-AbilityEstimatesPlotmethod

Description

PlotsaKernelDensityEstimationofthedistributionofthefactorscores(i.e.,personparameters).Providesalsotheoptiontoincludeintheplottheitemdifficultyparameters(similartotheItemPersonMaps).Usage

##S3methodforclass󰁜fscores󰁜

plot(x,bw=\"nrd0\adjust=2,kernel=\"gaussian\

include.items=FALSE,tol=0.2,xlab=\"Ability\ylab=\"Density\main=\"KernelDensityEstimationforAbilityEstimates\pch=16,cex=1.5,...)Arguments

xanobjectinheritingfromclassfscores.bw,adjust,kernel

argumentstodensity().

include.itemslogical;ifTRUEtheitemdifficultyparametersareincludedintheplot.tolthetoleranceusedtogrouptheitemdifficultyparameters,i.e.,wheninclude.items=TRUE

thevaluesround(betas/tol)*tolareplotted,wherebetaisthenumericvectorofitemdifficultyparameters.

xlab,ylab,main

characterstringoranexpression;seetitle.

pch,cexargumentstostripchart();usedwheninclude.items=TRUE....extragraphicalparameterstobepassedtoplot.density().Author(s)

DimitrisRizopoulosSeeAlso

factor.scoresExamples

##FactorScoresforLSATdata:fsc<-factor.scores(rasch(LSAT))

plot(fsc,include.items=TRUE,main=\"KDEforPersonParameters\")legend(\"left\\"itemparameters\pch=16,cex=1.5,bty=\"n\")

44plotIRT

plotIRTPlotmethodforfittedIRTmodels

Description

ProducestheItemCharacteristicorItemInformationCurvesforfittedIRTmodels.Usage

##S3methodforclass󰁜gpcm󰁜

plot(x,type=c(\"ICC\\"IIC\\"OCCu\\"OCCl\"),items=NULL,

category=NULL,zrange=c(-3.8,3.8),

z=seq(zrange[1],zrange[2],length=100),annot,

labels=NULL,legend=FALSE,cx=\"top\cy=NULL,ncol=1,bty=\"n\col=palette(),lty=1,pch,xlab,ylab,main,sub=NULL,cex=par(\"cex\"),cex.lab=par(\"cex.lab\"),cex.main=par(\"cex.main\"),cex.sub=par(\"cex.sub\"),cex.axis=par(\"cex.axis\"),plot=TRUE,...)##S3methodforclass󰁜grm󰁜

plot(x,type=c(\"ICC\\"IIC\\"OCCu\\"OCCl\"),items=NULL,

category=NULL,zrange=c(-3.8,3.8),

z=seq(zrange[1],zrange[2],length=100),annot,

labels=NULL,legend=FALSE,cx=\"top\cy=NULL,ncol=1,bty=\"n\col=palette(),lty=1,pch,xlab,ylab,main,sub=NULL,cex=par(\"cex\"),cex.lab=par(\"cex.lab\"),cex.main=par(\"cex.main\"),cex.sub=par(\"cex.sub\"),cex.axis=par(\"cex.axis\"),plot=TRUE,...)##S3methodforclass󰁜ltm󰁜

plot(x,type=c(\"ICC\\"IIC\\"loadings\"),items=NULL,

zrange=c(-3.8,3.8),z=seq(zrange[1],zrange[2],length=100),annot,labels=NULL,legend=FALSE,cx=\"topleft\cy=NULL,ncol=1,bty=\"n\col=palette(),lty=1,pch,xlab,ylab,zlab,main,sub=NULL,cex=par(\"cex\"),cex.lab=par(\"cex.lab\"),cex.main=par(\"cex.main\"),cex.sub=par(\"cex.sub\"),cex.axis=par(\"cex.axis\"),plot=TRUE,...)##S3methodforclass󰁜rasch󰁜

plot(x,type=c(\"ICC\\"IIC\"),items=NULL,

zrange=c(-3.8,3.8),z=seq(zrange[1],zrange[2],length=100),annot,labels=NULL,legend=FALSE,cx=\"topleft\cy=NULL,ncol=1,bty=\"n\col=palette(),lty=1,pch,xlab,ylab,main,sub=NULL,cex=par(\"cex\"),cex.lab=par(\"cex.lab\"),cex.main=par(\"cex.main\"),cex.sub=par(\"cex.sub\"),cex.axis=par(\"cex.axis\"),plot=TRUE,...)

plotIRT

##S3methodforclass󰁜tpm󰁜

plot(x,type=c(\"ICC\\"IIC\"),items=NULL,

zrange=c(-3.8,3.8),z=seq(zrange[1],zrange[2],length=100),annot,labels=NULL,legend=FALSE,cx=\"topleft\cy=NULL,

ncol=1,bty=\"n\col=palette(),lty=1,pch,xlab,ylab,main,sub=NULL,cex=par(\"cex\"),cex.lab=par(\"cex.lab\"),cex.main=par(\"cex.main\"),cex.sub=par(\"cex.sub\"),cex.axis=par(\"cex.axis\"),plot=TRUE,...)Arguments

xtype

45

anobjectinheritingeitherfromclassgpcm,classgrm,classltm,classraschorclasstpm.

thetypeofplot;\"ICC\"referstoItemResponseCategoryCharacteristicCurveswhereas\"IIC\"toItemInformationCurves.Forltmobjectstheoption\"loadings\"isalsoavailablethatproducesthescatterplotofthestandardizedloadings.Forgrmobjectstheoptions\"OCCu\"and\"OCCl\"arealsoavailablethatproducestheitemoperationcharacteristiccurves.

anumericvectordenotingwhichitemstoplot;ifNULLallitemsareplotted;if0andtype=\"IIC\"theTestInformationCurveisplotted.

ascalarindicatingtheresponsecategoryforwhichthecurvesshouldbeplotted;ifNULLallcategoriesareconsidered.Thisargumentisonlyrelevantforgrmobjects.

anumericvectoroflength2indicatingtherangeforthelatentvariablevalues.anumericvectordenotingthevaluesforthelatentvariable(s)valuestobeusedintheplots.

logical;ifTRUEtheplottedlinesareannotated.

charactervector;thelabelstouseineithertheannotationorlegend.IfNULLadequatelabelsareproduced.logical;ifTRUEalegendisprinted.

itemscategory

zrangezannotlabelslegend

cx,cy,ncol,bty

argumentsoflegend;cxandcycorrespondtothexandyargumentsoflegend.col,lty,pch

controlvalues,seepar;recyclingisusedifnecessary.

xlab,ylab,zlab,main,sub

characterstringoranexpression;seetitle.cex,cex.lab,cex.main,cex.sub,cex.axis

thecexfamilyofargument;seepar.plot...

logical;ifTRUEtheplot(s)is(are)producedotherwiseonlythevaluesusedtocreatetheplot(s)arereturned.

extragraphicalparameterstobepassedtoplot(),lines(),legend()andtext().

46Details

plotIRT

Itemresponsecategorycharacteristiccurvesshowhowtheprobabilityofrespondinginthekthcategory,ineachitem,changeswiththevaluesofthelatentvariable(ability).

Theiteminformationcurvesindicatetherelativeabilityofanitemtodiscriminateamongcontigu-oustraitscoresatvariouslocationsalongthetraitcontinuum.Thetestinformationcurve,whichisthesumofiteminformationcurves,providesavisualdepictionofwherealongthetraitcontinuumatestismostdiscriminating(ReiseandWaller,2002).Value

Thevaluesusedtocreatetheplot,i.e.,thex-,y-coordinates.Thisiseitheramatrixoralistinwhichthefirstcolumnorelementprovidesthelatentvariablevaluesused,andtheremainingcolumnsorelementscorrespondtoeitherprobabilitiesorinformationorloadings,dependingonthevalueofthetypeargument.Author(s)

DimitrisRizopoulosReferences

Reise,S.andWaller,N.(2002)Itemresponsetheoryfordichotomousassessmentdata.InDrasgow,F.andSchmitt,N.,editors,MeasuringandAnalyzingBehaviorinOrganizations.SanFrancisco:Jossey-Bass.SeeAlso

information,gpcm,grm,ltm,rasch,tpmExamples

#Examplesforplot.grm()fit<-grm(Science[c(1,3,4,7)])

##ItemResponseCategoryCharacteristicCurvesfor##theSciencedata

op<-par(mfrow=c(2,2))

plot(fit,lwd=2,legend=TRUE,ncol=2)#re-setpar()par(op)

##ItemCharacteristicCurvesforthe2ndcategory,##anditems1and3

plot(fit,category=2,items=c(1,3),lwd=2,legend=TRUE,cx=\"right\")##ItemInformationCurvesfortheSciencedata;

plot(fit,type=\"IIC\legend=TRUE,cx=\"topright\lwd=2,cex=1.4)

plotIRT

##TestInformationFunctionfortheSciencedata;plot(fit,type=\"IIC\items=0,lwd=2)

####################################################Examplesforplot.ltm()

##ItemCharacteristicCurvesforthetwo-parameterlogistic##model;plotonlyitems1,2,4and6;taketherangeofthe##latentabilitytobe(-2.5,2.5):fit<-ltm(WIRS~z1)

plot(fit,items=c(1,2,4,6),zrange=c(-2.5,2.5),lwd=3,cex=1.4)

##TestInformationFunctionunderthetwo-parameterlogistic##modelfortheLsatdatafit<-ltm(LSAT~z1)

plot(fit,type=\"IIC\items=0,lwd=2,cex.lab=1.2,cex.main=1.3)info<-information(fit,c(-3,0))

text(x=2,y=0.5,labels=paste(\"TotalInformation:\round(info$InfoTotal,3),

\"\\n\\nInformationin(-3,0):\round(info$InfoRange,3),

paste(\"(\round(100*info$PropRange,2),\"%)\sep=\"\")),cex=1.2)##ItemCharacteristicSurfacesfortheinteractionmodel:fit<-ltm(WIRS~z1*z2)

plot(fit,ticktype=\"detailedheta=30,phi=30,expand=0.5,d=2,

cex=0.7,col=\"lightblue\")####################################################Examplesforplot.rasch()

##ItemCharacteristicCurvesfortheWIRSdata;##plotonlyitems1,3and5:fit<-rasch(WIRS)

plot(fit,items=c(1,3,5),lwd=3,cex=1.4)

abline(v=-4:4,h=seq(0,1,0.2),col=\"lightgray\lty=\"dotted\")fit<-rasch(LSAT)

##ItemCharacteristicCurvesfortheLSATdata;##plotallitemsplusalegendanduseonlyblack:

plot(fit,legend=TRUE,cx=\"right\lwd=3,cex=1.4,

cex.lab=1.6,cex.main=2,col=1,lty=c(1,1,1,2,2),pch=c(16,15,17,0,1))

abline(v=-4:4,h=seq(0,1,0.2),col=\"lightgray\lty=\"dotted\")##ItemInformationCurves,forthefirst3items;includealegend

plot(fit,type=\"IIC\items=1:3,legend=TRUE,lwd=2,cx=\"topright\")##TestInformationFunction

47

48

plot(fit,type=\"IIC\items=0,lwd=2,cex.lab=1.1,

sub=paste(\"Call:\deparse(fit$call)))

##Totalinformationin(-2,0)basedonalltheitemsinfo.Tot<-information(fit,c(-2,0))$InfoRange##Informationin(-2,0)basedonitems2and4

info.24<-information(fit,c(-2,0),items=c(2,4))$InfoRange

text(x=2,y=0.5,labels=paste(\"TotalInformationin(-2,0):\

round(info.Tot,3),

\"\\n\\nInformationin(-2,0)basedon\\nItems2and4:\round(info.24,3),paste(\"(\round(100*info.24/info.Tot,2),\"%)\sep=\"\")),cex=1.2)##TheStandardErrorofMeasurementcanbeplottedbyvals<-plot(fit,type=\"IIC\items=0,plot=FALSE)

plot(vals[,\"z\"],1/sqrt(vals[,\"info\"]),type=\"l\lwd=2,

xlab=\"Ability\ylab=\"StandardError\main=\"StandardErrorofMeasurement\")####################################################Examplesforplot.tpm()

##ComparetheItemCharacteristicCurvesfortheLSATdata,

##undertheconstraintRaschmodel,theunconstraintRaschmodel,##andthethreeparametermodelassumingequaldiscrimination##acrossitems

par(mfrow=c(2,2))

pl1<-plot(rasch(LSAT,constr=cbind(length(LSAT)+1,1)))text(2,0.35,\"Raschmodel\\nDiscrimination=1\")pl2<-plot(rasch(LSAT))

text(2,0.35,\"Raschmodel\")

pl3<-plot(tpm(LSAT,type=\"rasch\max.guessing=1))text(2,0.35,\"Raschmodel\\nwithGuessingparameter\")

##ComparetheItemCharacteristicCurvesforItem4##(youhavetoruntheabovefirst)

plot(range(pl1[,\"z\"]),c(0,1),type=\"n\xlab=\"Ability\

ylab=\"Probability\main=\"ItemCharacteristicCurves-Item4\")lines(pl1[,c(\"z\\"Item4\")],lwd=2,col=\"black\")lines(pl2[,c(\"z\\"Item4\")],lwd=2,col=\"red\")lines(pl3[,c(\"z\\"Item4\")],lwd=2,col=\"blue\")

legend(\"right\c(\"RaschmodelDiscrimination=1\\"Raschmodel\

\"Raschmodelwith\\nGuessingparameter\"),lwd=2,col=c(\"black\\"red\\"blue\"),bty=\"n\")

rasch

raschRaschModel

raschDescription

FittheRaschmodelundertheItemResponseTheoryapproach.Usage

rasch(data,constraint=NULL,IRT.param=TRUE,start.val=NULL,

na.action=NULL,control=list(),Hessian=TRUE)Arguments

dataconstraint

49

adata.frame(thatwillbeconvertedtoanumericmatrixusingdata.matrix())oranumericmatrixofmanifestvariables.

atwo-columnnumericmatrixwithatmostprows(wherepisthenumberofitems),specifyingfixed-valueconstraints.Thefirstcolumnrepresentstheitem(i.e.,1denotesthefirstitem,2thesecond,etc.,andp+1thediscriminationpa-rameter)andthesecondcolumnthevalueatwhichthecorrespondingparametershouldbefixed.SeeExamplesformoreinfo.

logical;ifTRUEthenthecoefficients’estimatesarereportedundertheusualIRTparameterization.SeeDetailsformoreinfo.

thecharacterstring\"random\"oranumericvectorofp+1startingvalues,wherethefirstpvaluescorrespondtotheeasinessparameterswhilethelastvaluecor-respondstothediscriminationparameter.If\"random\randomstartingvaluesareused.IfNULLstartingvaluesareautomaticallycomputed.

thena.actiontobeusedondata.Incaseofmissingdata,ifna.action=NULLthemodelusestheavailablecases,i.e.,ittakesintoaccounttheobservedpartofsampleunitswithmissingvalues(validunderMARmechanismsifthemodeliscorrectlyspecified).Ifyouwanttoapplyacompletecaseanalysisthenusena.action=na.exclude.alistofcontrolvalues,

iter.qNthenumberofquasi-Newtoniterations.Default150.

GHkthenumberofGauss-Hermitequadraturepoints.Default21.

methodtheoptimizationmethodtobeusedinoptim().Default\"BFGS\".verboselogical;ifTRUEinfoabouttheoptimizationprocedureareprinted.

IRT.paramstart.val

na.action

control

Hessian

logical;ifTRUE,thentheHessianmatrixiscomputed.Warning:settingthisargumenttoFALSEwillcausemanymethods(e.g.,summary())tofail;settingtoFALSEisintendedforsimulationpurposesinorderrasch()torunfaster.

Details

TheRaschmodelisaspecialcaseoftheunidimensionallatenttraitmodelwhenallthediscrimina-tionparametersareequal.ThismodelwasfirstdiscussedbyRasch(1960)anditismainlyusedineducationaltestingwheretheaimistostudytheabilitiesofaparticularsetofindividuals.Themodelisdefinedasfollows

log󰀃πi1−πi

󰀄

=βi+βz,

50rasch

whereπidenotestheconditionalprobabilityofrespondingcorrectlytotheithitemgivenz,βiistheeasinessparameterfortheithitem,βisthediscriminationparameter(thesameforalltheitems)andzdenotesthelatentability.

IfIRT.param=TRUE,thentheparametersestimatesarereportedundertheusualIRTparameteri-zation,i.e.,

󰀃󰀄

πi∗

log=β(z−βi).

1−πiThefitofthemodelisbasedonapproximatemarginalMaximumLikelihood,usingtheGauss-Hermitequadraturerulefortheapproximationoftherequiredintegrals.

Value

Anobjectofclassraschwithcomponents,coefficientslog.Likconvergencehessiancountspatterns

amatrixwiththeparametervaluesatconvergence.Thesearealwaystheesti-matesofβi,βparameters,evenifIRT.param=TRUE.thelog-likelihoodvalueatconvergence.theconvergenceidentifierreturnedbyoptim().

theapproximateHessianmatrixatconvergencereturnedbyoptim().

thenumberoffunctionandgradientevaluationsusedbythequasi-Newtonal-gorithm.

alistwithtwocomponents:(i)X:anumericmatrixthatcontainstheobservedresponsepatterns,and(ii)obs:anumericvectorthatcontainstheobservedfrequenciesforeachobservedresponsepattern.

alistwithtwocomponentsusedintheGauss-Hermiterule:(i)Z:anumericmatrixthatcontainstheabscissas,and(ii)GHw:anumericvectorthatcontainsthecorrespondingweights.

themaximumabsolutevalueofthescorevectoratconvergence.thevalueoftheconstraintargument.thevalueoftheIRT.paramargument.acopyoftheresponsedatamatrix.thevaluesusedinthecontrolargument.thevalueofthena.actionargument.thematchedcall.

GH

max.scconstraintIRT.paramXcontrolna.actioncallWarning

IncasetheHessianmatrixatconvergenceisnotpositivedefinite,trytore-fitthemodelusingrasch(...,start.val=\"random\").

raschNote

51

AlthoughthecommonformulationoftheRaschmodelassumesthatthediscriminationparameterisfixedto1,rasch()estimatesit.Ifyouwishtofittheconstrainedversionofthemodel,usetheconstraintargumentaccordingly.SeeExamplesformoreinfo.

Theoptimizationalgorithmworksundertheconstraintthatthediscriminationparameterβisalwayspositive.

Whenthecoefficients’estimatesarereportedundertheusualIRTparameterization(i.e.,IRT.param=TRUE),theirstandarderrorsarecalculatedusingtheDeltamethod.Author(s)

DimitrisRizopoulosReferences

Baker,F.andKim,S-H.(2004)ItemResponseTheory,2nded.NewYork:MarcelDekker.Rasch,G.(1960)ProbabilisticModelsforSomeIntelligenceandAttainmentTests.Copenhagen:PaedagogiskeInstitute.

Rizopoulos,D.(2006)ltm:AnRpackageforlatentvariablemodellinganditemresponsetheoryanalyses.JournalofStatisticalSoftware,17(5),1–25.URLhttp://www.jstatsoft.org/v17/i05/SeeAlso

coef.rasch,fitted.rasch,summary.rasch,anova.rasch,plot.rasch,vcov.rasch,GoF.rasch,item.fit,person.fit,margins,factor.scoresExamples

##ThecommonformoftheRaschmodelforthe##LSATdata,assumingthatthediscrimination##parameterequals1

rasch(LSAT,constraint=cbind(ncol(LSAT)+1,1))##TheRaschmodelfortheLSATdataunderthe

##normalogive;todothatfixthediscrimination##parameterto1.702

rasch(LSAT,constraint=cbind(ncol(LSAT)+1,1.702))##TheRaschmodelfortheLSATdatawith##unconstraintdiscriminationparameterrasch(LSAT)

##TheRaschmodelwith(artificiallycreated)##missingdatadata<-LSAT

data[]<-lapply(data,function(x){

x[sample(1:length(x),sample(15,1))]<-NA

52

x

rcor.test

})

rasch(data)

rcor.testPairwiseAssociationsbetweenItemsusingaCorrelationCoefficient

Description

ComputesandteststhepairwiseassociationsbetweenitemsusingacorrelationcoefficientUsage

rcor.test(mat,p.adjust=FALSE,p.adjust.method=\"holm\...)Arguments

matp.adjustp.adjust.method

themethodargumentofp.adjust().

...Value

Anobjectofclassrcor.testwithcomponents,cor.matp.values

thecorrelationmatrix.

athreecolumnnumericmatrixcontainingthep-valuesforallthecombinationsofitems.

extraargumentspassedtocor()andcor.test().

anumericmatrixoranumericdata.framecontainingthemanifestvariablesascolumns.

logical;ifTRUEthep-valuesareadjustedformultiplecomparisons.

Theprintmethodforclassrcor.testreturnsasquarematrixinwhichtheupperdiagonalpartcontainstheestimatesofthecorrelationcoefficients,andthelowerdiagonalpartcontainsthecor-respondingp-values.Note

rcor.test()ismoreappropriateforinformaltestingofassociationbetweenpolytomousitems.Author(s)

DimitrisRizopoulos

residualsExamples

##pairwiseassociationsforEnvironmentdata:

rcor.test(data.matrix(Environment),method=\"kendall\")

##pairwiseassociationsforindependentnormalrandomvariates:

mat<-matrix(rnorm(1000),100,10,dimnames=list(NULL,LETTERS[1:10]))rcor.test(mat)

rcor.test(mat,method=\"kendall\")rcor.test(mat,method=\"spearman\")

53

residualsResidualsforIRTmodels

Description

Computestheresidualsforvectorsofresponsepatterns.Usage

##S3methodforclass󰁜gpcm󰁜

residuals(object,resp.patterns=NULL,order=TRUE,...)##S3methodforclass󰁜grm󰁜

residuals(object,resp.patterns=NULL,order=TRUE,...)##S3methodforclass󰁜ltm󰁜

residuals(object,resp.patterns=NULL,order=TRUE,...)##S3methodforclass󰁜rasch󰁜

residuals(object,resp.patterns=NULL,order=TRUE,...)##S3methodforclass󰁜tpm󰁜

residuals(object,resp.patterns=NULL,order=TRUE,...)Arguments

objectresp.patterns

anobjectinheritingeitherfromclassgpcm,classgrm,classltm,classraschorclasstpm.

amatrixoradata.frameofresponsepatternswithcolumnsdenotingtheitems;ifNULLtheexpectedfrequenciesarecomputedfortheobservedresponsepatterns.

logical;ifTRUEtheresponsepatternsaresortedaccordingtotheresidualesti-mates.

additionalarguments;currentlynoneisused.

order...

54Details

Thefollowingresidualsarecomputed:

Oi−Ei√,Ei

rmvlogis

whereOiandEidenotetheobservedandexpectedfrequenciesfortheithresponsepattern.Value

Anumericmatrixcontainingtheobservedandexpectedfrequenciesaswellastheresidualvalueforeachresponsepattern.Author(s)

DimitrisRizopoulosSeeAlso

fitted.gpcm,fitted.grm,fitted.ltm,fitted.rasch,fitted.tpmExamples

fit<-ltm(LSAT~z1)residuals(fit)

residuals(fit,order=FALSE)

rmvlogis

GenerateRandomResponsesPatternsunderDichotomousandPoly-tomousIRTmodels

Description

ProducesBernoulliorMultinomialrandomvariatesundertheRasch,thetwo-parameterlogistic,thethreeparameter,thegradedresponse,andthegeneralizedpartialcreditmodels.Usage

rmvlogis(n,thetas,IRT=TRUE,link=c(\"logit\\"probit\"),

distr=c(\"normal\\"logistic\\"log-normal\\"uniform\"),z.vals=NULL)rmvordlogis(n,thetas,IRT=TRUE,model=c(\"gpcm\\"grm\"),

link=c(\"logit\\"probit\"),

distr=c(\"normal\\"logistic\\"log-normal\\"uniform\"),z.vals=NULL)

rmvlogisArguments

nthetas

ascalarindicatingthenumberofresponsepatternstosimulate.

55

forrmvlogis()anumericmatrixwithrowsrepresentingtheitemsandcolumnstheparameters.Forrmvordlogis()alistwithnumericvectorelements,withfirstthethresholdparametersandlastthediscriminationparameter.SeeDetailsformoreinfo.

logical;ifTRUEthetasareundertheIRTparameterization.SeeDetailsformoreinfo.

fromwhichmodeltosimulate.

acharacterstringindicatingthelinkfunctiontouse.Optionsarelogitandprobit.acharacterstringindicatingthedistributionofthelatentvariable.OptionsareNormal,Logistic,log-Normal,andUniform.

anumericvectoroflengthnprovidingthevaluesofthelatentvariable(ability)tobeusedinthesimulationofthedichotomousresponses;ifspecifiedthevalueofdistrisignored.

IRTmodellinkdistrz.vals

Details

Thebinaryvariatescanbesimulatedunderthefollowingparameterizationsfortheprobabilityofcorrectlyrespondingintheithitem.IfIRT=TRUE

πi=ci+(1−ci)g(β2i(z−β1i)),

whereasifIRT=FALSE

πi=ci+(1−ci)g(β1i+β2iz),

zdenotesthelatentvariable,β1iandβ2iarethefirstandsecondcolumnsofthetas,respectively,andg()isthelinkfunction.Ifthetasisathree-columnmatrixthenthethirdcolumnshouldcontaintheguessingparametersci’s.

Theordinalvariatesaresimulatedaccordingtothegeneralizedpartialcreditmodelorthegradedresponsemodeldependingonthevalueofthemodelargument.Checkgpcmandgrmtoseehowthesemodelsaredefined,underbothparameterizations.Value

anumericmatrixwithnrowsandcolumnsthenumberofitems,containingthesimulatedbinaryorordinalvariates.Note

Foroptionsdistr=\"logistic\",distr=\"log-normal\"anddistr=\"uniform\"thesimulatedrandomvariatesforzsimulatedundertheLogisticdistributionwithlocation=0andscale=1,thelog-Normaldistributionwithmeanlog=0andsdlog=1andtheUniformdistributionwithmin=-3.5andmax=3.5,respectively.Then,thesimulatedzvariatesarestandardized,usingthetheoreticalmeanandvarianceoftheLogistic,log-NormalandUniformdistribution,respectively.

56Author(s)

DimitrisRizopoulosSeeAlso

gpcm,grm,ltm,rasch,tpmExamples

#10responsepatternsunderaRaschmodel#with5items

rmvlogis(10,cbind(seq(-2,2,1),1))

#10responsepatternsunderaGPCMmodel#with5items,with3categorieseach

thetas<-lapply(1:5,function(u)c(seq(-1,1,len=2),1.2))rmvordlogis(10,thetas)

Science

ScienceAttitudetoScienceandTechnology

Description

ThisdatasetcomesfromtheConsumerProtectionandPerceptionsofScienceandTechnologysectionofthe1992Euro-BarometerSurvey(KarlheinzandMelich,1992)basedonasamplefromGreatBritain.Thequestionsaskedaregivenbelow:Format

Allofthebelowitemsweremeasuredonafour-groupscalewithresponsecategories\"stronglydisagree\\"disagreetosomeextent\\"agreetosomeextent\"and\"stronglyagree\":

ComfortScienceandtechnologyaremakingourliveshealthier,easierandmorecomfortable.EnvironmentScientificandtechnologicalresearchcannotplayanimportantroleinprotectingthe

environmentandrepairingit.WorkTheapplicationofscienceandnewtechnologywillmakeworkmoreinteresting.

FutureThankstoscienceandtechnology,therewillbemoreopportunitiesforthefuturegenera-tions.TechnologyNewtechnologydoesnotdependonbasicscientificresearch.

IndustryScientificandtechnologicalresearchdonotplayanimportantroleinindustrialdevelop-ment.BenefitThebenefitsofsciencearegreaterthananyharmfuleffectitmayhave.

summaryReferences

57

Bartholomew,D.,Steel,F.,Moustaki,I.andGalbraith,J.(2002)TheAnalysisandInterpretationofMultivariateDataforSocialScientists.London:ChapmanandHall.

Karlheinz,R.andMelich,A.(1992)Euro-Barometer38.1:ConsumerProtectionandPerceptionsofScienceandTechnology.INRA(Europe),Brussels.[computerfile]Examples

##DescriptivestatisticsforSciencedatadescript(Science)

summarySummarymethodforfittedIRTmodels

Description

Summarizesthefitofeithergrm,ltm,raschortpmobjects.Usage

##S3methodforclass󰁜gpcm󰁜

summary(object,robust.se=FALSE,...)##S3methodforclass󰁜grm󰁜summary(object,...)

##S3methodforclass󰁜ltm󰁜

summary(object,robust.se=FALSE,...)##S3methodforclass󰁜rasch󰁜

summary(object,robust.se=FALSE,...)##S3methodforclass󰁜tpm󰁜summary(object,...)Arguments

objectrobust.se...

anobjectinheritingfromeitherclassgpcm,eitherclassgrm,classltm,classraschorclasstpm.

logical;ifTRUErobustestimationofstandarderrorsisused,basedonthesand-wichestimator.

additionalargument;currentlynoneisused.

58Value

summary

Anobjectofeitherclasssumm.gpcm,classsumm.grm,classsumm.ltmorclasssumm.raschwithcomponents,coefficientsVar.betaslogLikAICBICmax.scconvcountscallltn.structcontrolnitemsNote

Fortheparametersthathavebeenconstrained,thestandarderrorsandz-valuesareprintedasNA.Whenthecoefficients’estimatesarereportedundertheusualIRTparameterization(i.e.,IRT.param=TRUEinthecallofeithergrm,ltmorrasch),theirstandarderrorsarecalculatedusingtheDeltamethod.Author(s)

DimitrisRizopoulosSeeAlso

gpcm,grm,ltm,rasch,tpmExamples

#useHessian=TRUEifyouwantstandarderrorsfit<-grm(Science[c(1,3,4,7)],Hessian=TRUE)summary(fit)

##OnefactormodelusingtheWIRSdata;##resultsarereportedundertheIRT##parameterizationfit<-ltm(WIRS~z1)summary(fit)

theestimatedcoefficients’table.

theapproximatecovariancematrixfortheestimatedparameters;returnedonlyinsumm.ltmandsumm.rasch.thelog-likelihoodofobject.theAICforobject.theBICforobject.

themaximumabsolutevalueofthescorevectoratconvergence.theconvergenceidentifierreturnedbyoptim().thecountsargumentreturnedbyoptim().thematchedcallofobject.

acharactervectordescribingthelatentstructureusedinobject;returnedonlyinsumm.ltm.

thevaluesusedinthecontrolargumentinthefitofobject.

thenumberofitemsinthedataset;returnedonlyinsumm.ltmandsumm.rasch.

testEquatingData59

testEquatingDataPreparesDataforTestEquating

Description

Testequatingbycommonitems.Usage

testEquatingData(DataList,AnchoringItems=NULL)Arguments

DataList

alistofdata.framesormatricescontainingcommonanduniqueitemsbe-tweenseveralforms.

AnchoringItemsadata.frameoramatrixcontaininganchoringitemsforacrosssampleequat-ing.Details

Thepurposeofthisfunctionistocombineitemsfromdifferentforms.Twocasesareconsid-ered.AlternateFormEquating(wherecommonanduniqueitemsareanalyzedsimultaneously)andAcrossSampleEquating(wheredifferentsetsofuniqueitemsareanalyzedseparatelybasedonpreviouslycalibratedanchoritems).Value

Amatrixcontainingthecommonanduniqueitems.Author(s)

DimitrisRizopoulosReferences

Yu,C.-H.andOsbornPopp,S.(2005)Testequatingbycommonitemsandcommonsubjects:conceptsandapplications.PracticalAssessmentResearchandEvaluation,10(4),1–19.URLhttp://pareonline.net/getvn.asp?v=10&n=4

Rizopoulos,D.(2006)ltm:AnRpackageforlatentvariablemodellinganditemresponsetheoryanalyses.JournalofStatisticalSoftware,17(5),1–25.URLhttp://www.jstatsoft.org/v17/i05/

60Examples

#Lettwodata-setswithcommonanduniqueitems

dat1<-as.data.frame(rmvlogis(20,cbind(c(-2,1,2,1),1)))names(dat1)<-c(\"CIt2\\"CIt3\\"CIt4\\"W\")

dat2<-as.data.frame(rmvlogis(10,cbind(c(-2,-1,1,2,0.95),1)))names(dat2)<-c(\"CIt1\\"CIt2\\"CIt3\\"CIt4\\"K\")#combineinonedata-setbylisForms<-list(dat1,dat2)testEquatingData(lisForms)

tpm

tpmBirnbaum’sThreeParameterModel

Description

FitBirnbaum’sthreeparametermodelundertheItemResponseTheoryapproach.Usage

tpm(data,type=c(\"latent.trait\\"rasch\"),constraint=NULL,

max.guessing=1,IRT.param=TRUE,start.val=NULL,na.action=NULL,control=list())Arguments

datatype

adata.frame(thatwillbeconvertedtoanumericmatrixusingdata.matrix())oranumericmatrixofmanifestvariables.

acharacterstringindicatingthetypeofmodeltofit.Availableoptionsare‘rasch’thatassumesequaldiscriminationparameteramongitems,and‘latent.trait’(default)thatassumesadifferentdiscriminationparameterperitem.

athree-columnnumericmatrixspecifyingfixed-valueconstraints.Thefirstcol-umnrepresentstheitem(i.e.,1denotesthefirstitem,2thesecond,etc.);thesecondcolumndenotesthetypeofparametertofixfortheitemspecifiedinthefirstcolumn(i.e.,1denotestheguessingparameters,2theeasinessparameters,and3thediscriminationparameters);thethirdcolumnspecifiesthevalueatwhichthecorrespondingparametershouldbefixed.SeeExamplesformoreinfo.

ascalarbetween0and1denotingtheupperboundfortheguessingparameters.logical;ifTRUEthenthecoefficients’estimatesarereportedundertheusualIRTparameterization.SeeDetailsformoreinfo.

constraint

max.guessingIRT.param

tpm

start.val

61

thecharacterstring\"random\"oranumericmatrixsupplyingstartingvalueswithprowsand3columns,withpdenotingthenumberofitems.IfNULLstartingvaluesareautomaticallycomputed.If\"random\randomstartingvaluesareused.Ifamatrix,thenthefirstcolumnshouldcontaintheguessingparameter,thesecondβ1i,andthethirdβ2i(seeDetails).Iftype==\"rasch\",thenthethirdshouldcontainthesamenumberptimes.

thena.actiontobeusedondata.Incaseofmissingdata,ifna.action=NULLthemodelusestheavailablecases,i.e.,ittakesintoaccounttheobservedpartofsampleunitswithmissingvalues(validunderMARmechanismsifthemodeliscorrectlyspecified).Ifyouwanttoapplyacompletecaseanalysisthenusena.action=na.exclude.alistofcontrolvalueswithelements,

optimizeracharacterstringdenotingtheoptimizertouse,either\"optim\"(de-fault)or\"nlminb\".

iter.qNscalardenotingthenumberofiterationsintheoptimizationprocedure.

Foroptim()thisispassedtothecontrolargument‘maxit’,whereasfornlminb()thisispassedtobothcontrolarguments‘iter.max’and‘eval.max’.Default1000.

GHkscalardenotingthenumberofGauss-Hermitequadraturepoints.Default

21.

methodacharacterstringdenotingtheoptimizationmethodtobeusedinoptim().

Default\"BFGS\".

verboselogical;ifTRUEinfoabouttheoptimizationprocedureareprinted.eps.hessianthestep-lengthtouseinthecentraldifferenceapproximationthat

approximatesthehessian.Defaultis1e-03.

parscaleascalingnumericvectoroflengthequaltotheparameterstobees-timated(takingintoaccountanyconstraints).Thisispassedtoeithertothe‘parscale’controlargumentofoptim()ortothe‘scale’argumentofnlminb().Defaultis0.5fortheguessingparametersand1forthediscrim-inationandeasinessparameters.

na.action

control

Details

Birnbaum’sthreeparametermodelisusuallyemployedtohandlethephenomenonofnon-randomguessinginthecaseofdifficultitems.Themodelisdefinedasfollows

πi=ci+(1−ci)

exp(β1i+β2iz)

,

1+exp(β1i+β2iz)

whereπidenotestheconditionalprobabilityofrespondingcorrectlytotheithitemgivenz,cidenotestheguessingparameter,β1iistheeasinessparameter,β2iisthediscriminationparameter,andzdenotesthelatentability.Incasetype=\"rasch\",β2iisassumedequalforallitems.IfIRT.param=TRUE,thentheparametersestimatesarereportedundertheusualIRTparameteri-zation,i.e.,

exp[β2i(z−β1i)]πi=ci+(1−ci)∗)].1+exp[β2i(z−β1i

62tpm

ThefitofthemodelisbasedonapproximatemarginalMaximumLikelihood,usingtheGauss-Hermitequadraturerulefortheapproximationoftherequiredintegrals.

Value

Anobjectofclasstpmwithcomponents,coefficientslog.Likconvergencehessiancountspatterns

amatrixwiththeparametervaluesatconvergence.Thesearealwaystheesti-matesofβi,βparameters,evenifIRT.param=TRUE.thelog-likelihoodvalueatconvergence.theconvergenceidentifierreturnedbyoptim().

theapproximateHessianmatrixatconvergenceobtainedusingacentraldiffer-enceapproximation.

thenumberoffunctionandgradientevaluationsusedbytheoptimizationalgo-rithm.

alistwithtwocomponents:(i)X:anumericmatrixthatcontainstheobservedresponsepatterns,and(ii)obs:anumericvectorthatcontainstheobservedfrequenciesforeachobservedresponsepattern.

alistwithtwocomponentsusedintheGauss-Hermiterule:(i)Z:anumericmatrixthatcontainstheabscissas,and(ii)GHw:anumericvectorthatcontainsthecorrespondingweights.

themaximumabsolutevalueofthescorevectoratconvergence.thevalueofthetypeargument.thevalueoftheconstraintargument.thevalueofthemax.guessingargument.thevalueoftheIRT.paramargument.acopyoftheresponsedatamatrix.thevaluesusedinthecontrolargument.thevalueofthena.actionargument.thematchedcall.

GH

max.sctypeconstraintmax.guessingIRT.paramXcontrolna.actioncallWarning

Thethreeparametermodelisknowntohavenumericalproblemslikenon-convergenceorconver-genceontheboundary,especiallyfortheguessingparameters.Theseproblemsusuallyresultinazeroestimateforsomeguessingparametersand/orinanonpositivedefiniteHessianmatrixorinahighabsolutevalueforthescorevector(returnedbythesummarymethod)atconvergence.Incaseofestimatesontheboundary,theconstraintargumentcanbeusedtosettheguessingparame-ter(s)fortheproblematicitem(s)tozero.Inaddition,tpm()hasanumberofcontrolparametersthatcanbetunedinordertoobtainsuccessfulconvergence;themostimportantofthesearethestartingvalues,theparameterscalingvectorandtheoptimizer.Author(s)

DimitrisRizopoulos

unidimTestReferences

Baker,F.andKim,S-H.(2004)ItemResponseTheory,2nded.NewYork:MarcelDekker.

63

Birnbaum,A.(1968).Somelatenttraitmodelsandtheiruseininferringanexaminee’sability.InF.M.LordandM.R.Novick(Eds.),StatisticalTheoriesofMentalTestScores,397–479.Reading,MA:Addison-Wesley.

Rizopoulos,D.(2006)ltm:AnRpackageforlatentvariablemodellinganditemresponsetheoryanalyses.JournalofStatisticalSoftware,17(5),1–25.URLhttp://www.jstatsoft.org/v17/i05/SeeAlso

coef.tpm,fitted.tpm,summary.tpm,anova.tpm,plot.tpm,vcov.tpm,item.fit,person.fit,margins,factor.scoresExamples

#thethreeparametermodeltpm(LSAT)

#use󰁜nlminb󰁜asoptimizer

tpm(LSAT,control=list(optimizer=\"nlminb\"))

#thethreeparametermodelwithequal#discriminationparameteracrossitems

#fixtheguessingparameterforthethirditemtozerotpm(LSAT,type=\"rasch\constraint=cbind(3,1,0))#thethreeparametermodelfortheAbortiondatafit<-tpm(Abortion)fit

#theguessingparameterestimatesforitems1,3,and4seemtobeon#theboundary;updatethefitbyfixingthemtozeroupdate(fit,constraint=cbind(c(1,3,4),1,0))

unidimTestUnidimensionalityCheckusingModifiedParallelAnalysis

Description

Anempiricalcheckfortheunidimensionalityassumptionforltm,raschandtpmmodels.

64Usage

unidimTest(object,data,thetas,IRT=TRUE,z.vals=NULL,

B=100,...)Arguments

object

unidimTest

amodelobjectinheritingeitherfromclassltm,classraschorclasstpm.Forltm()itisassumedthatthetwo-parameterlogisticmodelhasbeenfitted(i.e.,onelatentvariableandnononlinearterms);seeNoteforanextraoption.amatrixoradata.frameofresponsepatternswithcolumnsdenotingtheitems;usedifobjectismissing.

anumericmatrixwithIRTmodelparametervaluestobeusedinrmvlogis;usedifobjectismissing.

logical,ifTRUE,thenargumentthetascontainsthemeasurementmodelparam-etersundertheusualIRTparameterization(seermvlogis);usedifobjectismissing.

anumericvectoroflengthequaltothenumberofrowsofdata,providingabilityestimates.Ifobjectissuppliedthentheabilitiesareestimatedusingfactor.scores.IfNULL,theabilitiesaresimulatedfromastandardnormaldistribution.

thenumberofsamplesfortheMonteCarloproceduretoapproximatethedistri-butionofthestatisticunderthenullhypothesis.extraargumentstopolycor().

datathetasIRT

z.vals

B...Details

ThisfunctionimplementstheprocedureproposedbyDrasgowandLissak(1983)forexaminingthelatentdimensionalityofdichotomouslyscoreditemresponses.Thestatisticusedfortestingunidimensionalityisthesecondeigenvalueofthetetrachoriccorrelationsmatrixofthedichotomousitems.Thetetrachoriccorrelationsbetweenarecomputedusingfunctionpolycor()frompackage‘polycor’,andthelargestoneistakenascommunalityestimate.

AMonteCarloprocedureisusedtoapproximatethedistributionofthisstatisticunderthenullhypothesis.Inparticular,thefollowingstepsarereplicatedBtimes:

Step1:Ifobjectissupplied,thensimulatenewabilityestimates,sayz∗,fromanormaldistri-butionwithmeantheabilityestimateszˆintheoriginaldata-set,andstandarddeviationthestandarderrorofzˆ(inthiscasethez.valsargumentisignored).Ifobjectisnotsuppliedandthez.valsargumenthasbeenspecified,thensetz∗=z.vals.Finally,ifobjectisnotsuppliedandthez.valsargumenthasnotbeenspecified,thensimulatez∗fromastandardnormaldistribution.Step2:Simulateanewdata-setofdichotomousresponses,usingz∗,andparameterstheestimated

parametersextractedfromobject(ifitissupplied)ortheparametersgiveninthethetasargument.Step3:Forthenewdata-setsimulatedinStep2,computethetetrachoriccorrelationsmatrixand

takethelargestcorrelationsascommunalities.Forthismatrixcomputetheeigenvalues.

unidimTest65

DenotebyTobsthevalueofthestatistic(i.e.,thesecondfortheoriginal󰀁eigenvalue)󰀂data-set.Then󰀇B

thep-valueisapproximatedaccordingtotheformula1+b=1I(Tb≥Tobs)/(1+B),whereI(.)denotestheindicatorfunction,andTbdenotesthevalueofthestatisticinthebthdata-set.Value

AnobjectofclassunidimTestisalistwithcomponents,TobsTbootp.valuecallNote

Forltmobjectsyoucanalsousealikelihoodratiotesttocheckunidimensionality.Inparticular,fit0<-ltm(data~z1);fit1<-ltm(data~z1+z2);anova(fit0,fit1).Author(s)

DimitrisRizopoulosReferences

Drasgow,F.andLissak,R.(1983)Modifiedparallelanalysis:aprocedureforexaminingthelatentdimensionalityofdichotomouslyscoreditemresponses.JournalofAppliedPsychology,68,363–373.SeeAlso

descriptExamples

##Notrun:

#UnidimensionalityCheckfortheLSATdata-set#underaRaschmodel:

out<-unidimTest(rasch(LSAT))out

plot(out,type=\"b\pch=1:2)

legend(\"topright\c(\"RealData\\"AverageSimulatedData\"),lty=1,

pch=1:2,col=1:2,bty=\"n\")##End(Notrun)

anumericvectoroftheeigenvaluesfortheobserveddata-set.anumericmatrixoftheeigenvaluesforeachsimulateddata-set.thep-value.

acopyofthematchedcallofobjectifthatwassupplied.

66vcov

vcovvcovmethodforfittedIRTmodels

Description

Extractstheasymptoticvariance-covariancematrixoftheMLEsfromeithergpcm,grm,ltm,raschortpmobjects.Usage

##S3methodforclass󰁜gpcm󰁜vcov(object,robust=FALSE,...)##S3methodforclass󰁜grm󰁜vcov(object,...)

##S3methodforclass󰁜ltm󰁜

vcov(object,robust=FALSE,...)##S3methodforclass󰁜rasch󰁜vcov(object,robust=FALSE,...)##S3methodforclass󰁜tpm󰁜vcov(object,...)Arguments

objectrobust...Value

anumericmatrixrepresentingtheestimatedcovariancematrixofthemaximumlikelihoodesti-mates.Notethatthiscovariancematrixisfortheparameterestimatesundertheadditiveparame-terizationandnotundertheusualIRTparameterization;formoreinfochecktheDetailssectionofgrm,ltm,rasch,andtpm.Author(s)

DimitrisRizopoulosSeeAlso

gpcm,grm,ltm,rasch,tpm

anobjectinheritingfromeitherclassgpcm,classgrm,classltm,classraschorclasstpm.

logical;ifTRUEthesandwichestimatorisused.additionalarguments;currentlynoneisused.

WIRSExamples

fit<-rasch(WIRS)vcov(fit)

sqrt(diag(vcov(fit)))#standarderrorsunderadditiveparameterization

67

WIRSWorkplaceIndustrialRelationSurveyData

Description

Thesedataweretakenfromasectionofthe1990WorkplaceIndustrialRelationSurvey(WIRS)dealingwithmanagement/workerconsultationinfirms.Thequestionsaskedaregivenbelow:Format

Pleaseconsiderthemostrecentchangeinvolvingtheintroductionofthenewplant,machineryandequipment.Werediscussionsorconsultationsofanyofthetypeonthiscardheldeitherabouttheintroductionofthechangeoraboutthewayitwastobeimplemented.Item1Informaldiscussionwithindividualworkers.Item2Meetingwithgroupsofworkers.

Item3Discussionsinestablishedjointconsultativecommittee.

Item4Discussionsinspeciallyconstitutedcommitteetoconsiderthechange.Item5Discussionswiththeunionrepresentativesattheestablishment.Item6Discussionswithpaidunionofficialsfromoutside.Source

TheWIRSsurveyscanbefoundathttp://www.niesr.ac.uk/niesr/wers98/.References

Bartholomew,D.(1998)Scalingunobservableconstructsinsocialscience.AppliedStatistics,47,1–13.

Bartholomew,D.,Steel,F.,Moustaki,I.andGalbraith,J.(2002)TheAnalysisandInterpretationofMultivariateDataforSocialScientists.London:ChapmanandHall.Examples

##DescriptivestatisticsforWirsdatadescript(WIRS)

Index

∗Topicdatasets

AbortionEnvironment,3

gh,13LSAT,19Mobility,30ScienceWIRS,67,,5637∗Topicmethods

anovacoef,factor.scores,8

4fitted,14margins,17plotplotdescript,35

,42plotfscores,43residualsIRT,44summaryvcov,66

,57,53∗Topicmultivariate

biserial.corcronbach.alpha,7descriptGoF,,10gpcm,1911grm,21information,24

item.fitltm,,27ltm-package,31

28mult.choice,2person.fit,38raschrcor.test,48

,39rmvlogis,52testEquatingData,54

tpmunidimTest,60

,59,63

∗Topicpackage

ltm-package,2∗Topicregression

gpcmgrm,21ltm,24rasch,31tpm,60,48Abortionanova,3anova.gpcm,4

anova.grm,23anova.ltm,26anova.rasch,34anova.tpm,63,51biserial.cor,7coefcoef.gpcm,8

coef.grm,23coef.ltm,26coef.rasch,34coef.tpm,51cronbach.alpha,63

,10descript,11,42,65Environmentexpression,,4212,,4313,45

factor.scores,14,23,26,34,40,43,51,63,

64

fittedfitted.gpcm,17

fitted.grmfitted.ltm,,2623,54fitted.rasch,34,,5454fitted.tpm,54,51,63

,5468

INDEX

ghGoF,19GoF.gpcm,19

GoF.rasch,6gpcmgrm,,66,,99,,,,23,29,4116166,,,292420,,,36,41,51

4621,,5546,,5655,,5856,,6658,66informationitem.fit,20,,2728,,46

34,36,41,51,63legendLSATltmltm-package,,630

,45,9,16,23,2

,31,46,56,58,66marginsMobility,20,23,26,29,34,35,41,51,63mult.choice,37,38

parperson.fit,45

plot,20,29,34,36,39,51,63plotdescript,42plotfscoresplot.descriptIRT,44

,43plot.descript,plot.fscores(13

plotdescriptplot.fscores,),42plot.gpcm(16

plotfscores),43plot.gpcm,23,27

plot.grmplot.grm,26(plot,IRT),44plot.ltm(plot27

IRT),44plot.ltm,plot.rasch(27plot,34

IRT),plot.rasch,plot.tpm(2744plot,51

IRT),44plot.tpm,(63

plotIRT),44

raschrcor.test,6,9,16,20,23,46,48residuals,52,56,58,66residuals.gpcm,53

residuals.grm,18residuals.ltm,18residuals.rasch,18residuals.tpm,18rmvlogis,18rmvordlogis,54,(64

rmvlogis),54

69

Sciencesummary,56summary.gpcm,57

summary.grm,23summary.ltm,26summary.rasch,34summary.tpm,63

,51testEquatingDatatitletpm,6,,42,599,,1643,,4645

,56,58,60,66unidimTest,13,63vcovvcov.gpcm,66

vcov.grm,23vcov.ltm,vcov.rasch,2634vcov.tpm,63,51WIRS,67

因篇幅问题不能全部显示,请点此查看更多更全内容

Top