热门搜索 :
考研考公
您的当前位置:首页正文

Limits and approximations for the MG1 LIFO waiting-time distribution, submitted

来源:伴沃教育
LIMITSANDAPPROXIMATIONSFORTHEM/G/1LIFOWAITING-TIMEDISTRIBUTION

by

JosephAbate1andWardWhitt2

April15,1996

Revision:January2,1997

OperationsResearchLetters20(1997)199–206

Abstract

Weprovideadditionaldescriptionsofthesteady-statewaiting-timedistributionintheM/G/1queuewiththelast-infirst-out(LIFO)servicediscipline.Weestablishheavy-trafficlimitsforboththecumulativedistributionfunction(cdf)andthemoments.Wedevelopanapproximationforthecdfthatisasymptoticallycorrectbothasthetrafficintensityρ→1foreachtimetandast→∞foreachρ.WeshowthatinheavytraffictheLIFOmomentsarerelatedtotheFIFOmomentsbytheCatalannumbers.Wealsodevelopanewrecursivealgorithmforcomputingthemoments.

KeyWords:M/G/1queue;Last-infirst-outservicediscipline;Waitingtime;HeavyTraffic;

Asymptotics;Asymptoticnormalapproximation;Moments;Catalannumbers

1.Introduction

Thepurposeofthispaperistodeduceadditionalpropertiesofthesteady-statewaiting-timedistribution(untilbeginningservice)intheM/G/1queuewiththelast-infirst-out(LIFO)servicediscipline.Weobtainourresultsherebyapplyingresultsinourpreviouspapers[1]–[6].OurresultsherecomplementpreviousM/G/1LIFOresultsbyVaulot[17],Wishart[19],Riordan[13],[14],Tak´acs[16]andIliadisandFuhrmann[10].

WestartinSection2byestablishingaheavy-trafficlimittheoremfortheM/G/1LIFOsteady-statewaiting-timedistribution.InSection3wegiveanewderivationforthelarge-timeasymptoticsoftheLIFOsteady-statewaiting-timedistribution,complementingourrecentresultin[1].InSection4wethendevelopanapproximationfortheLIFOwaiting-timedistribution,calledtheasymptoticnormalapproximation,andshowthatitisasymptoticallycorrectbothastimet→∞foreachvalueofthetrafficintensityρandasρ→1foreacht.OurapproximationgeneralizesanapproximationsuggestedfortheM/M/1modelbyRiordan[14],p.109.Sections2–4parallelanddrawonourpreviouslimitingresultsfortheM/G/1busy-perioddistributionin[5].InSection5wegiveanumericalexampleshowingthattheasymptoticnormalapproximationfortheLIFOsteady-statewaiting-timecdfperformsverywell.Weshowthatitismuchbetterthanthelarge-timelimit(thelimitast→∞foreachfixedρ).

InSection6wedevelopanewrecursivealgorithmforcomputingtheM/G/1LIFOwaiting-timemoments.WebelievethatthisalgorithmisanattractivealternativetopreviousalgorithmsdevelopedbyTak´acs[16]andIliadisandFuhrmann[10].Thefirstfourmomentsaregivenexplicitly.InSection7weshowthatthemomentshaveaverysimpleasymptoticforminheavytraffic.2.Heavy-TrafficLimitfortheLIFOCDF

Inthissectionweestablishaheavy-trafficlimitfortheLIFOsteady-statewaiting-timecdf,denotedbyWL.Forthispurpose,weestablishheavy-trafficlimitsfortheM/G/1workloadprocessmomentcdf’s.TheseworkloadresultsextendpreviousresultsfortheM/M/1specialcaseinCorollary5.22of[3].Theheavy-trafficlimitsfortheworkloadprocessarelocal-limitrefinements(versionsfordensities)totheoremsthatcanbededuceddirectlyfromolderheavy-trafficlimittheorems,e.g.,inWhitt[18].

Weusethefollowingnotation.Foranycumulativedistributionfunction(cdf)F,letfbetheassociatedprobabilitydensityfunction(pdf)andletmk(F)bethekthmoment.LetFc(t)≡1−F(t)

1

betheassociatedcomplementarycdf(ccdf)andlettheassociatedequilibriumexcessccdfbe

cFe(t)

=m1(F)

−1

󰀅

t

Fc(u).

(2.1)

ThepdfofFeisfeanditskthmomentismk(Fe).

Fork≥1,letHkbethekthmomentcdfofcanonical(drift1,diffusioncoefficient1)reflectedBrownianmotion(RBM){R(t):t≥0},i.e.,

Hk(t)=

E[R(t)k|R(0)=0]

E[Vρ(∞)k]

,t≥0,(2.5)

see[4].JustaswithHk(t)in(2.2),Hρk(t)asafunctionoftissimultaneouslytheexpectationofastochasticprocessandacdfforeachρ.AlsoletHρ0bethe0th-momentcdforserver-occupancycdf,definedby

Hρ0(t)=(1−P00(t))/ρ,

t≥0,

(2.6)

whereP00(t)istheprobabilityofemptinessattimetstartingemptyattime0(witharrivalrateρ),asin(23)of[4].

2

ThekeyformulaconnectingtheseexpressionstotheLIFOcdfWLis

ccWL(t)=P00(t)−(1−ρ)=ρHρ0(t),

(2.7)

duetoTak´acs[16];see(36)of[1]and(78)onp.500of[16].ThenexttheoremdescribestheLIFOsteady-statewaiting-timecdfWLinheavytraffic.Theorem2.1Foreacht>0,

c(tm(G)(1−ρ)−2)limρ→12(1−ρ)−1WL2

c(tm(G)(1−ρ)−2)=limρ→12(1−ρ)−1Hρ20

=limρ→1m2(G)(1−ρ)−2hρ1(tm2(G)(1−ρ)−2)=h1(t)

forh1in(2.3).

Proof.By(2.7),thefirstlimitisequivalenttothesecond.ByTheorem2(b)of[4],hρ0e(t)=Hρ1(t),sothathρ1(t)=Hρ0(t)/hρ01.ByTheorem6(b)of[4],hρ01=ρ−1vρ1=m2(G)/2ρ(1−ρ).Hencethethirdlimitisequivalenttothesecond.

ByTheorems3(a)and4(b)of[4],

ˆρ1(s)=h

1−ˆbρe(s)

s(1−ρ+ρˆbρe(cs))

.

Sincewehaveexpressionsforthetransforms,weestablishtheconvergenceusingthem.ByThe-ˆ1(s)asρ→1.(Equations(2.9)of[5]shouldreadhρ(t)≡m2(1−ρ)−2orem1of[5],ˆbρe(cs)→h

c(tm(1−e)−2),withmtherebeingm(G)here.Incidentally,bρe(tm2(1−ρ)−2)=m2(1−ρ)−1Bρ222∗(dt(1−ρ)−2)inaspacenormalization—typicallyc(1−ρ)foraconstantc—ismissingbeforeWρ

ConditionC2onp.589in[5]aswell.)Hence,

ˆ1(s)]2[1−hˆhρ1(cs)→

ˆ1(s)h

ˆ1(s),=h

withthelaststepfollowingfrom(2.6)of[5]orp.568of[2].

TheLIFOapproximationobtainedfromTheorem2.1is

c

(t)≈WL

(1−ρ)

TheM/M/1specialcaseofTheorem2.1forhρ1(t)isgiveninCorollary5.2.2of[3].In[3]thetimescalingisdoneattheoutset;see(2.2)there.

Thelimitforthedensityhρ1impliesacorrespondinglimitfortheassociatedcdfHρ1,byScheff´e’stheorem,p.224ofBillingsley[7].Thefollowingresultcouldalsobededucedfromstandardheavy-trafficlimitsfortheworkloadprocess[18].Corollary.Foreacht>0,

limHρ1(tm2(G)(1−ρ)−2)=H1(t)=1−2(1+t)[1−Φ(t1/2)]+2t1/2φ(t1/2).

ρ→1

3.Large-TimeAsymptotics

In[1]weused(2.7)andanintegralrepresentationforP00(t)toestablishtheasymptoticbehavior

c(t)ast→∞.HerewegiveanalternativederivationbasedonasymptoticsforthedensityofWL

wL(t).Letf(t)∼g(t)ast→∞meanthatf(t)/g(t)→1ast→∞.

WestartwiththeelementaryobservationthattheconditionalLIFOsteady-statewaitingtimegiventhatitispositivecoincideswiththebusyperiodgeneratedbytheequilibriumexcessofaservicetime.Letb(t,θ)bethedensityofabusyperiodstartingwithaservicetimeoflengthθ.ThentheLIFOwaiting-timedistributionhasanatomofsize1−ρattheoriginandadensity

wL(t)=ρ

󰀅

0

b(t,θ)ge(θ)dθ,t>0.(3.1)

From(3.1),wereasonasinCoxandSmith[8]and[1]toobtainthefollowingasymptoticresult.Theorem3.1Ast→∞,

wL(t)∼(ω/τ)(πt3)−1/2e−t/τ

and

c

WL(t)∼ω(πt3)−1/2e−t/τ,

(3.2)

(3.3)

whereτ−1istheasymptoticdecayrate(reciprocaloftherelaxationtime),givenby

τ−1=ρ+ζ−ρgˆ(−ζ),

(3.4)

ζistheuniquerealnumberutotheleftofallsingularitiesoftheservice-timemomentgeneratingfunctiongˆ(−s)(assumedtoexist)suchthat

gˆ′(−u)=−ρ−1,

4

(3.5)

ω=ρα/ζ2,α=[2ρ3gˆ′′(−ζ)]−1/2.

Proof.Weapply(19)of[1]with(3.1)toobtaintheintegralrepresentation

wL(t)=(ρ/t)L−1(−gˆe(s)exp(−ρt(1−gˆ(s))),

(3.6)(3.7)

(3.8)

whereL−1istheLaplacetransforminversionoperator(Bromwichcontourintegral)

L−1(ˆg(s))(t)=

1

ζ2τ

obtain(3.3);seep.17ofErd´elyi[9].

b(t)ast→∞.(3.12)

Hence,wecaninvoketheknownasymptoticsforb(t)in(5)of[1].Finally,weintegrate(3.2)to

4.TheAsymptoticNormalApproximation

In[5]wefoundthatthetailoftheM/G/1busy-periodccdfiswellapproximatedbyanasymp-toticnormalapproximation,whichisasymptoticallycorrectasρ→1foreachtandast→∞foreachρ.WenowapplyessentiallythesamereasoningtodevelopasimilarapproximationfortheLIFOsteady-statewaiting-timeccdf.

ParallelingTheorem2of[5],wecanexpresstheasymptoticrelationin(3.3)intermsofh1(t),because

h1(t)∼2t−1γ(t)ast→∞,

(4.1)

forγin(2.4).Thefollowingisourasymptoticnormalapproximation,obtainedbycombining(2.4),(3.1)and(4.1).TheM/M/1specialcasewasproposedfortheM/M/1queuebyRiordan[14],p.109.

5

Theorem4.1If(3.3)holds,then

cWL(t)∼2ωτ−3/2h1(2t/τ)ast→∞.

forh1(t)in(2.3),τin(3.4)andωin(3.6).

Theorem4.1directlyshowsthattheasymptoticnormalapproximationisasymptoticallycorrectast→∞foreachρ.Previousasymptoticrelationsforτandωshowthatitisalsoasymptoticallycorrectasρ→1foreacht.Inparticular,by(14)and(40)of[1],

τ

−1

=

(1−ρ)2

2

󰀁

2

󰀆

(1+O(1−ρ))asρ→1,(4.3)

whichisconsistentwith(2.9).Fortheconstant,notethat

2ωτ

−3/2

2

asρ→1.(4.4)

5.ANumericalExample

InthissectionwecomparetheapproximationsfortheM/G/1LIFOsteady-statewaiting-time

c(t)toexactvaluesobtainedbynumericaltransforminversion.WeconsiderthegammaccdfWL

service-timedistributionwithshapeparameter1/2,denotedbyΓ1/2,whichhaspdfgin(2.4)andLaplacetransform

gˆ(s)=1/

s+ρgˆ(1/ρˆ00(s))

integralrepresentation

,(5.2)

see(37)of[4],andthenuse(2.7).However,thereisamoredirectapproachusingthecontour

c

WL(t)=t−1L−1(s−2exp(−ρt(1−gˆ(s))))−(1−ρ),

(5.3)

6

whereL−1istheinverseLaplacetransformoperator;see(34)of[1].Equation(3.8)aboveisasimilarrepresentationforthedensity.

c(t)forthecaseρ=0.75.InTable1wealsodisplayresultsTable1givestheresultsforWL

forthreeapproximations:(i)thestandardasymptoticapproximationin(3.1),(ii)theheavy-trafficapproximationin(2.9)and(iii)theasymptoticnormalapproximationinTheorem3.1.

Forthestandardasymptoticapproximation,weneedtoderivetheasymptoticparametersωandτ−1.Forthisexample,wefindfromtherootequation(3.5)that

ζ=

1

2

3

√√

time

t

exactbynumericalinversion

asymptoticnormalapproximation,Theorem4.1heavy-traffic

approximation,

(2.8)standardasymptoticapproximation,

(3.3)

Table1showsthattheasymptoticnormalapproximationisremarkablyaccuratefortnottoosmall,e.g.,fort≥5.Moreover,theasymptoticnormalapproximationismuchbetterthanthestandardasymptoticapproximationbasedon(3.3).Theheavy-trafficapproximationisquitegoodthoughfortneithertoolargenortoosmall,e.g.,for1.0≤t≤120.Thestandardasymptoticapproximationisnotgooduntiltisverylarge.FromTable1,notethatthestandardasymptoticapproximationforthetailprobabilityisconsistentlyhigh,whereastheheavy-trafficapproximation(2.8)crossestheexactcurvetwice.

6.ARecursiveAlgorithmfortheLIFOMoments

Inthissectionwerelatethekthmomentsofthesteady-stateFIFOandLIFOwaiting-timedistributions,denotebyvkandwk,respectively.Forpreviousrelatedwork,seeTak´acs[16]andIliadisandFuhrmann[10].IliadisandFuhrmannshowthatthesamerelationshipbetweenLIFOandFIFOholdsforalargeclassofmodelswithPoissonarrivals.

Leth0kbethekthmomentoftheserver-occupancycdfHρ0in(2.6).By(2.7),

wk=ρh0kforallk≥1.

(6.1)

Theorem6of[4]givesanexpressionforthemomentsh0kintermsofthemomentsbekofthebusy-periodequilibriumexcessdistribution,whileTheorem5of[4]givestherecursiveformulaforthebusy-periodequilibrium-excessdistributionmomentsbekintermsofthemomentsvk.ThesetworesultsgivearecursivealgorithmforcomputingtheLIFOmomentswkintermsoftheFIFOmomentsvk.

First,asin(43)of[4],wecanrelatetheFIFOwaiting-timemomentstotheservice-timemomentsviaarecursion.Letthekthservice-timemomentbedenotedbygk.Therecursionis

vk=

ρ

j+1

vk−j,

(6.2)

wherev0=1,sothattheFIF0momentsvkarereadilyavailablegiventheservice-timemomentsgk.

ˆByTheorem3aof[4],theequilibrium-timetoemptinesstransformfǫ0(s)canbeexpressedas

ˆˆfǫ0(s)=1−ρ+ρbe(s),

sothattheirmomentsarerelatedby

fǫ0k=ρbek,

8

k≥1.

(6.4)(6.3)

Theorem5of[4]showsthatthesemomentscanbecomputedrecursively,giventhemomentsvk.Toemphasizetherecursivenature,foranyLaplacetransform

ˆ(s)=f

󰀅

∞0

e−stf(t)dt,

(6.5)

ˆ)bethetruncatedpowerseriesdefinedbyletTn(f

ˆ)(s)=Tn(f

n󰀄fk

k=0

dsk

|s=0,

(6.7)

whichiswelldefinedassumingthattheintegralsin(6.7)arefinite.ThenTheorem5(a)of[4]canberestatedas

fǫ0k=

󰀂󰀃k󰀄kvj

j=1

j

w3=

v3+3v2v1

1−ρ

(6.10)

,

(1−ρ)3

whichisconsistentwithTheorem6of[4].Inthecase(e)ofTheorem6in[4]thereisatypographicalerrorinh04;allfourtermsthereshouldbedividedbyρ(1−ρ)3.

9

7.Heavy-TrafficLimitsfortheLIFOMoments

WenowshowthattheLIFOwaiting-timemomentshaveasimpleasymptoticforminheavytraffic.AsinSection6,letgkandwkbethekthmomentsoftheservicetimeandLIFOwaitingtime,respectively.

Theorem7.1Assumethatgn+2<∞.Thenwn+1<∞and

wn∼

(2n−2)!

(1−ρ)n−1

asρ→1.

(7.1)

ToputTheorem7.1inperspective,itshouldbecontrastedwiththeknownheavytrafficre-sultsforfirst-infirst-out(FIFO)andrandomorderofservice(ROS).ForFIFO,thewaiting-timedistributionisasymptoticallyexponentiallydistributedasρ→1,sothat

n

vn∼n!v1asρ→1.

(7.2)

ForROS,withWRasthecdf,Kingman[11]showedthat

1−WR(t)≈2

whereK1istheBesselfunction,sothat

nwRn∼(n!)2wR1asρ→1.

󰀆

t/wR1)

(7.3)

Ofcourse,w1=wR1=v1.Itisinterestingthat,asρ→1,thenthmomentsvn,wRNandwnin

ntimesn!,(n!)2and(2n−2)/(n−1)!(1−ρ)n−1,respectively.Hence,vandw(7.1)–(7.3)arev1nRN

areO((1−ρ)−n)asρ→1,whilewnisO((1−ρ)−(2n−1)).

WegiveanotherexpressionusingtheCatalannumbers.LetCnbethenthCatalannumber,i.e.,

Cn=

1

Corollary.UndertheconditionsofTheorem7.1,

wn∼Cn−1

vn

(n+1)!2n

Combining(7.6)and(7.7)givestheformula.

.(7.7)

Theextramomentconditionthatgn+2befiniteisusedtoestablishtherequireduniforminte-grability.From(6.2),(6.4),(6.8)and(6.9)weseethatvk,fǫ0k,bekandwkareallfinitefork≤nwhengk+1<∞.Toestablishupperboundsimplyinguniformintegrability,notethatby(6.2),

vk≤

gk+12k

(1−ρ)2k

whereKkisαconstantindependentofρ.Finally,by(6.9)and(7.9),

wk≤

Mk

(7.9)

(1−ρ)n

From(6.9),(7.5)and(7.11),wegettheconclusion.

11

asρ→1.(7.11)

References

[1]J.Abate,G.L.ChoudhuryandW.Whitt,“CalculatingtheM/G/1busy-perioddensityand

LIFOwaiting-timedistributionbydirectnumericaltransforminversion,”Opns.Res.Letters18,113–119(1995).

[2]J.AbateandW.Whitt,“TransientbehaviorofregulatedBrownianmotion,I:startingatthe

origin,”Adv.Appl.Prob.19,560–598(1987).

[3]J.AbateandW.Whitt,“TransientbehavioroftheM/M/1queueviaLaplacetransforms,”

Adv.Appl.Prob.20,145–178(1988).

[4]J.AbateandW.Whitt,“TransientbehavioroftheM/G/1workloadprocess,”Opns.Res.42,

750–764(1994).

[5]J.AbateandW.Whitt,“Limitsandapproximationsforthebusy-perioddistributioninsingle-serverqueues,”Prob.Engr.Inf.Sci.9,581–602(1995).

[6]J.AbateandW.Whitt,“AnoperationalcalculusforprobabilitydistributionsviaLaplace

transforms,”Adv.Appl.Prob.,28,75–113(1996).

[7]P.Billingsley,ConvergenceofProbabilityMeasures,Wiley,NewYork,1968.[8]D.R.CoxandW.L.Smith,Queues,Methuen,London,1961.[9]A.Erd´elyi,AsymptoticExpansions,Dover,NewYork,1956.

[10]I.IliadisandS.W.Fuhrmann,“MomentrelationshipsforqueueswithPoissoninput,”Queue-ingSystems12,243–256(1992).

[11]J.F.C.Kingman,“Queuedisciplinesinheavytraffic,”Math.Opns.Res.7,262–271(1982).[12]F.W.J.Olver,AsymptoticsandSpecialFunctions,AcademicPress,NewYork,1974.[13]J.Riordan,“Delaysforlast-comefirst-servedserviceandthebusyperiod,”BellSystemTech.

J.40,785–793(1961).

[14]J.Riordan,StochasticServiceSystems,Wiley,NewYork,1962.[15]J.Riordan,CombinatorialIdentities,Wiley,NewYork,1968.

12

[16]L.Tak´acs,“DelaydistributionsforonelinewithPoissoninput,generalholdingtimes,and

variousordersofservice,”BellSystemTech.J.42,487–503(1973).

[17]E.Vaulot,“Delaisd’attentedesappelstelephoniquesdansl’ordreinversedeleurarrive,”C.

R.Acad.Sci.Paris238,1188–1189(1954).

[18]W.Whitt,Weakconvergencetheoremsforpriorityqueues:preemptive-resumediscipline,J.

Appl.Prob.8(1971)74–94.

[19]D.M.Wishart,“Queueingsystemsinwhichthedisciplineislast-comefirst-served,”Oper.

Res.8,591–599(1960).

13

因篇幅问题不能全部显示,请点此查看更多更全内容

Top