SukratuBarve1
TheInstituteofMathematicalSciences
Chennai
Abstract
Weshowthatthebehaviouroftheoutgoingradialnullgeodesiccongruenceontheapparenthorizonisrelatedtothepropertyofnaked-nessinsphericaldustcollapsejustifyingthedifferenceinthePenrosediagramsinthenakedandcovereddustcollapsescenarios.Weprovideargumentssuggestingthattherelationshipcouldbegenerallyvalid.
1Introduction
Consideracloudofmatter(regularinitialCauchydata)collapsingin-definitelyunderitsowngravity.AsingularityeventuallydevelopsinthespacetimeanditisindicatedbythedivergenceoftheKretschmannscalar.Intheadvancedstagesofcollapsetrappedregionsareformed[1],[2]andthereexistsanullraywhichmarginallyescapestoinfin-ity(eventhorizon).Itisnotclearwhetherthesingularboundaryisentirelysurroundedbythetrappedregion.Inotherwords,itisnotknownifaportionoftheboundaryisexposedintheuntrappedregionandnon-spacelikegeodesicscanemanatefromit(nakedsingularities).ExactsolutionstoEinstein’sfieldequationswithcertainkindofsourcetermsareknowntoexhibitbothnakedandcoveredsingular-itiesdependinguponthesortofregularinitialdatachosen.Littleprogresshasbeenmaderegardingageneralclassificationofinitialdataaccordingtothecoveredornakedconsequenceoftheevolution.Itisnotknownifthedataleadingtonakedsingularitieshaszeromeasureinthesetofallpossible(orallpossiblephysicallyrelevant)Cauchydata.
ThecomplexityoftheproblemliesinthefactthattheCauchyinitialvalueproblemfortheEinsteinfieldequationswithsourcesislesstractable.Thesystematicsavailableaboutthegeneralproblemisfartoolessforanyimplicationforquestionslikeformationofnakedsingularities.Forinstance,eventhewellposednessoftheproblemisnotselfevidentandhastobeprovedindependentlyfordifferenttypesofsources[3],[4],[5].ItwouldbeindeeddifficulttofindorevenexpectaconservedormonotonicallybehavingfunctionoftheCauchysurfacewithrespecttoitsevolution,whichcouldbeexpectedtoprovideinsightintotheprocessofcreationofnakedsingularities.Asaresultofthisdifficulty,alargenumberofinvestigationsthathavebeencarriedouthavebeenconcerningcertainexactsolutionsornumericalsimulations.Issueslikestrengthofthesingularities,gener-icity,behaviourwithrespecttochangeofsourceetc.havebeenstud-iedinexampleslikedust,nulldust,perfectandimperfectfluidsandscalarfields.However,theydonotsuggestanytypicalgeometricalfeaturewhichcouldbeexpectedtoarisebeforeanakedsingularityforms(Incaseofasingularitythesingularitytheoremsmakeuseofatypicalgeometricalfeatureviz.trappedregionstoproveitsexis-tence).Suchafeatureindicatingthepresenceofanakedsingularity
2
wouldbeinterestinginthelightoftheHoopconjectureortheissueofisoperimetricinequalitiesandcouldleadtosomegeometricalinsightintotheprocess.Thelackofindicationofexistenceofsuchafeatureisevidentinthefactthatoneisforcedtocheckfortheexistenceofnakedsingularitiesinadirectmannereveninparticularexamples.Tobeprecise,onechecksifnonspace-likegeodesicsemergefromthesin-gularboundaryusingdifferentialgeometryandtheformofthemetricintheexample.
Thispaperisafirststeptowardsanindirectcriterion.Preferably,thecriterionshouldbeapplicableawayfromthesingularboundary.Thatisanon-localproblemandgiventhedifficultiesofCauchyevolu-tion,thereisnoindicationavailableforwhatthecriterioncouldbe.Itwouldbeperhapsappropriateinsuchasituationtoexamineregionsnearthesingularity.Therearealsopartsofthesingularityfromwhichgeodesicscannotescape.Somecriterionapplicabletosuchaportionwouldalsobesignificant.Itwouldindicatethattheinformationabouttheexposureofapartoftheboundaryiscontainedelsewhereontheboundary.
Weillustratethemainfeaturesofsphericaldustcollapseinradialco-ordinates(figures1and2)andincausallycorrectPenrosediagrams(figures3and4).
Infigure3,thereisnoportionoftheboundarybeyondOthatisexposed.Infigure4,however,thereisanullportion.Inthispaper,weexamineifOwouldyieldtheinformationabouttheexistenceofanexposedportion.Oisacoveredpointofthesingularboundary(withorwithoutanakedportion).Thispointiswheretheapparenthorizonmeetsthesingularity.Mathematically,oneworkswithpointsontheapparenthorizonintheapproachtotheconcernedpoint.Thiscouldbelookeduponasapropertyofthemarginallytrappedregionswhichconstitutetheapparenthorizon.Oneisthereforeworkingwithoutgoingnullcongruenceswithzeroexpansion.Ifasingularitymeetssucharegion,thepointinthestrictsensewillnothaveanynon-spacelikegeodesicsemergingfromitselfandwillthereforebecovered.Weprovethecriterionforthedustcase.Weofferasimplejusti-ficationforthedifferenceinthePenrosediagramsinthenakedandcovereddustcases.However,thecriterionisnotdustspecificandshouldbefurtherexaminedingeneralcases.
Theplanofthepaperisasfollows.Wefirstmotivatetheviewthatthetangentvectortoageodesicinacongruencerepresentsa’fluxden-
3
sity’analogoustothesituationinordinaryelectrostaticswhereonehaslinesofforce.Wewishtoinvestigatethetangentvectorontheapparenthorizon.Thenextsectiondescribestheselfsimilardustmodelwherewediscusstheaboveanddemonstratetheconnectionwithnakedness.Inthenextsectionweshowthattheresultscanbeextendedtothegeneraldustcase.FinallyweturntotheconformaltransformationleadingtothePenrosediagramforthenakedcasefromsphericalco-ordinatespointingoutthatitshoulddivergeatthesingu-larboundary.Wearguethatinageneralcase,thisdivergencewouldpreventingoinggeodesicsfromreachingthepointofinterestwhichwouldthensuggestthatanexposedingoingnullboundaryexists.
2FluxofCongruence
Thescenarioofsphericaldustcollapseisshownintheradialco-rdinatesinfigures1and2.Observethatinthenakedcase(figure2)severalgeodesicsemergefromthecentrebetweentheeventandap-parenthorizonsandfallintothetrappedregioncrossingtheapparenthorizon(Typicallythisisacaseofalocallynakedsingularity2).Allalongtheapparenthorizonintheapproachtothecentre,onewouldfindnullgeodesicswhichwouldhaveoriginatedatthenakedcentre.Asdrawninthefigure,theyappeartointersecttheapparenthorizoninasequenceofpointswhichagglomerateintheapproachtothecen-tre(intheEuclideansenseofthefigure).Ifthisideaofagglomerationcouldbemadeprecisethenitwouldbeofinteresttostudyifthey(orthegeodesics)tendtoclusternearapointontheapparenthorizon.Suchapropertywouldperhapscontaininformationaboutthesource,ifexistent,forthelinesofthecongruenceinamanneranalogoustoelectrostatics.Onecouldexpectanenhancementofclusteringofthenullcurvesinthenakedcaseasthereisasourceoflinesinthevicinity(nakedportionofthesingularboundary).Nosuchsourceatthecentreexistsinthecoveredcaseandthecongruencecouldperhapsexhibitadifferentcharacteristicbehaviour.Motivatedbythis,wedefinethequantityoffluxdensity.GivenamanifoldM,onedefinesacongruencetobeasetofcurvessuchthattheirunionisMandeachpointofMhasasinglecurvecontainingit.Thisisanalogoustotheconceptof
linesofforceinelectrostatics.Sowedefineaquantityanalogoustoelectrostaticfluxdensityforageodesicscongruence.Wefirstaffinelyparametrizethecongruenceandtreatthetangentvectorξliketheelectricfieldoftheanalogy.Forany3dimensionalhypersurfacewedefineξµdsµtobetheinfinitesimalfluxacrosstheinfinitesimalthreeareadsµofthehypersurface.Thefluxdensityisobviouslythetangentvectoritself.Itisthistangentvectorthatweexamineinthelimitofapproachtothesingularity(alongtheapparenthorizon).
Itmightappearfromthemotivationinthepreviousparagraphthatonewouldattempttocheckforsourcesoftheflux(liketaking∇horizon.Einelectrostatics).inanattempttoInsteadmoveawayofthis,fromwetheexaminesourceit(nakedonthepartapparentofthesingularboundaryorsetof‘points’wherecausalcurvesoriginateonthesingularityormorepreciselysetofidealpointstoT.I.F.s[2])forsearchingforanon-localcriterion.Wefindthatthoughweareunabletoformulateanycriterionawayfromthesingularity,weareabletoexaminethepointwheretheapparenthorizonmeetstheboundarywhichisalways(marginally)trappedandcanneverbeasource.
Thegeneralexpressionfortangentvectorisnotavailableinaclosedanalyticform.However,onecancalculateitinaspecialcasewhichwedescribebelowandsubsequentlyshowhowtogeneralizetheresults.
3SelfSimilarDustModel
Thecollapseofasphericalcloudofpressurelessfluidisgivenbythefollowingmetric[6])
ds2
=dt2
−
R′2
whichresemblesarelationbetweenkineticandgravitationalpotentialenergiesofashell.
R
˙2=F√
F
(3)
whereasingularityboundaryisformedatt=t0(r).Thecentral
shellfocussingsingularity,whichisthelimitasr→0alongthislocusisofinterestandturnsouttobenakedforsomeinitialdata.
Theself-similarmodelistheoneinwhichF(r)=λrwhereλisaconstant(whichdecidesifthecentralsingularitywillbenakedornot)andf(r)=0.3
Wechoosethescalingt0(r)=r.Aselfsimilarco-ordinatez=t/risintroduced.WenotetheexpressionsforRandR′whichwillbeusefulinthesubsequentanalysis
R=rλ−2/3(3/2(z−1))2/3(4)
R′=
2λ/3
2
(5)
Wecastthemetricintodoublenullco-ordinates.Itisnotdifficulttoshowthatds2=r2z2−R′2
dudv(6)where
du=dr
z−R′(z)(7)dv=
dr
z+R′(z)
(8)
Thedoublenullform(ds2=C2(u,v)dudv)turnsouttobeuseful
whenaffineparametersalongnullgeodesicsaretobecalculated.Forinstance,alonganoutgoingradialnullgeodesic(du=0),theaffineparameteris
u=constantC2dvuptoamultiplicativeandanadditiveconstant.
∂t
+r
∂
Nowletusturntocalculatingthetangentvectortotheoutgoingnullradialgeodesiccongruence,whichisourprimaryinterest.Assumethevectortobeoftheform
ξ=(Q(t,r),Q(t,r)
˙′/2R′=01+f/R′+Q2R
(10)
Wehaveprovidedtheexpressionsforthemostgeneraldustcase
here.Onemayreadofftheexpressionsfortheselfsimilarcasebysettingftozeroandusingequation5forR′.Theequationabovetakestheform
1/Q=
˙′R
u=constant
(z−3)23
z−1
1/3
dz(13)
orusingthefactthatdu=0fromequation(du)
1/Q=
1
u=constant
z2−1
2λ/3
b−R′(b)
z
dz(14)
Theintegraloverzistobeevaluatedfromr=0totheapparent
horizon,whereweshallbeinterestedinevaluatingthetangentvector.ThelattercanbeshowntobethecurveR=Fandturnsouttobethelocusz=1−2λ/3.
7
Theintegralbeingoverz,itisimportanttoknowwhichvalueofzalongtheoutgoingnullcurveyieldsr=0,thelowerlimitoftheintegral.ThisissueasitisshownfurtherleadstothedifferenceinthebehaviourofQinthenakedandcoveredcases.Considerthentheequation
r=e
−
db
b−R′(b)=0hasnorealroot.
Theintegrandthereforedoesnotdivergeanywhereandalsoremainspositive(orentirelynegative)allovertherealline.Itcanbecheckedthatb−R′(b)>0foranyonerealbwhichwouldbesufficienttoclaimthattheintegrandispositive.Also,b−R′(b)isboundedsincebistobelimitedtothenonsingularregionz<1(z=1isthesingularitycurveitself).So,inorderthattheintegraldiverge,therangeofintegrationshouldbeinfinite.Wehavechosentolimitthefinalpointtotheapparenthorizonz=1−2λ/3andhencetheinitialpointmustbez=−∞.
Infactashorterintuitiveargumentispossible.ItisknownfromtheTolmanBondidustmodelthatcentralsingularityformsat(t0(0),0).IfoneassumesthePenrosediagramforthecoveredcase(whichisindeedwhatthiscaseturnsouttobe),thenullrayscrossingtheap-parenthorizonbeginatthecentreatt r=(z−z−) 1 db (17) b=z− (Itcanbeeasilycheckedthatα<0)Atz=z−,therefore,rvanishes. Thusinconclusionofthisanalysis,wenotethatthelowerlimitofintegralfor1/Qdiffers.Itis−∞whenR′(b)−b=0canneverhavearealsolutionandistheroot(closesttoapparenthorizon)whenasolutionexists. Thisobservationplaysthekeyroleinfurtheranalysis.Makingnoteofthisconsiderequation(1/Qsecondone).Analyzingthevariousfactorsintheintegrandonefindsthattheintegrandwoulddivergeifz=−1(z=1sincewearenotonthesingularboundary). zwilltakethevalue−1incasei.Incaseii,thefollowingtakesplace.Considerb−R′usingequation(R’).Itiseasytoseethatb−R′<0forallb<0.So,therootb−cannotbenegative.Henceitiscertainlygreaterthan−1.Thuszcannottakethevalue−1incaseiiintheintegralfor1/Q. Thustheintegranddivergesas1/(z+1)incaseiandisfiniteincaseii. ExpandingtherestoftheintegrandfactorinaTaylorseriesaboutz=−1,onecaneasilycheckthatintegraldivergeslogarithmicallyincaseiwhilestayingfiniteincaseii. Thus,Qvanishesincaseiiandstaysnonzero(andfinite)incaseii. Returningnowtoequation9,wecannowseethatξbehavesindifferentwaysincaseiandcaseiiontheapparenthorizon,inparticularasoneapproachesthepointOonthePenrosediagrams√shown(figures3and44).Itcanbecheckedthatthefactor Figure4isadiagramofalocallynakedsingularity.Theselfsimilarcloudwhichweexaminehereturnsouttobegloballynaked.However,thestructurenearOisthesameasanylocallynakedcaseandfigure4canbeused. 4 9 Frompreviousanalysisofnakedsingularities(selfsimilarcases)usinganalysisforemergenceofgeodesics(rootsanalysis),itcanbecheckedthatcaseicorrespondstothecoveredcaseandcaseiicorre-spondstothenakedsingularmetric. 4Extensiontothegeneraldustcase Inthegeneraldustcase,theequation10yieldsnoclosedanalyticsolutionwhichwouldhaveclearlybeenuseful.However,wenotethatweareinterestedonlyinthebehaviourofQinthelimitofapproachtopointOontheapparenthorizon. Tothisendthefollowingobservationplaysanimportantrole.Itisshownthatgivenadustsolution,onecanconstructamodifieddustsolution(modifieddistribution)whichinasuitablelimitapproachesthegivendustsolution[7].Thekeyresultthatmakesthisconstructionusefulisthatitisprovedthatnakedmodifieddistributionsreproducenakeddustsolutionsgivenandcoveredmodifieddistributionsrepro-ducecoveredones.Onecanthenworkwiththemodifieddistributionforthegivendustsolutionandtakethelimitwhichpreservesnakedorcoverednature.Weoutlinetheconstructionin[7]belowa)Marginallyboundcase(f=0) ImagineashellofradiusrcinthegivenTolmanBondidustmodel.Replacetheinterioroftheshellbyaselfsimilardustmetric,matchingthefirstandsecondfundamentalformsattheinterfacer=rc.Itcanbeshownthatthisrestrictstheselfsimilarityparameterλwhichappearsinthemassfunction.Thisspecifiestheselfsimilarsolutioncompletely.Nowtakingthelimitasrctendstozero,onecanshow[7]thatthematchingconstraintdoesimplythattheinteriorselfsimilarsolutionstaysnakedinthelimitiftheoriginaldustsolutionwasnakedandlikewiseinthecoveredcase. b)NonMarginallyboundcase(f=0) Theconstructionissimilarinthiscaseexceptforanadditionalinterface.Twoshells,rc1andrc2(sayrc1 secondfundamentalformsateachoftheinterfaces.Asbefore,thiscanbeshowntoconstraintheinteriorselfsimilarsolutionuniquelygivenrc1andtheoriginaldustsolution.Again,thepropertyofbeingnakedorcoveredispreservedinthelimit(rc2→0)likethepreviouscase[7]. WenowconsiderQinthemodifieddistributionforanygivendustsolution.Intheselfsimilarpartofthelatter,resultsoftheprevioussectionapply.Sincethecongruenceofoutgoinggeodesicsissmooth,soisQ.ThismakesQcontinuousacrosstheinterface/sinthemodifieddistribution.Nowimaginethegivendustsolutionasthelimitingcaseofthemodifieddistribution.InthelimitofapproachtopointOontheapparenthorizon,onehastoevaluateQintheselfsimilarpart.BecauseofcontinuityofQ,thesamebehaviourwillcontinuetoholdinthelimitoftheinterface/stendingtozerowhentheoriginaldustsolutionisreproduced.Makinguseofthefactthatthepropertyofbeingnakedorcoveredispreservedinthislimit,oneconcludesthatthebehaviourofQintheselfsimilarnakedandcoveredcasescontinuestoholdinthegeneraldustscenarioaswell. 5ConformaltransformationandPen-rosediagram Thetendencyofthenullgeodesicsofthecongruencetoclusterintheapproachtothesingularboundaryisbasicallyduetotheinappropri-atenatureoftheco-ordinatesystemattheboundary.Ifonewishestodepicttheboundaryasacurveinaparticularco-ordinatesystem,thenullcongruencehastobewelldefined(inthesensethattheprop-ertythatoneandonlyonecurvepassesthrougheverypointshouldholdevenwhenthecongruenceisextendedtotheboundary).Forinstance,inthenakeddustcase,whenoneusessphericalco-ordinatesitcanbeseenthatseveralradialnullgeodesicsappeartoemergefromthecentralsingularitywiththesametangentvector[8]. Theissueabouttheco-ordinatesystembeingappropriateforsuchanextensioncouldthusrelatedtothebehaviourofξ. Fromatechnicalpointofview,thecalculationsusingtheradialco-ordinatescouldbeperformedinaconformallyrelatedmetricwhichavoidstheproblemofclusteringifitoccurs.Theconformaltransfor-mationwouldbetheoneleadingtothestructureofthesingularityas 11 depictedinthePenrosediagram. WenowarguethattheunderaconformaltransformationwhichdivergesinthelimitofO,ξwhichtendtoanon-zerolimittransformtovectorfieldswhichvanishinthelimit. Recallthatwedefinedξforanygeodesiccongruenceusinganaffineparametrization.Underconformaltransformations,affineparametersalongnullgeodesicschange(unliketimelikegeodesicswhichdonotremaingeodesiccurves,nullgeodesicsdostaysoprovidedtheaffineparameterchangesappropriately).Infinitesimalparameterdstrans-formstoΩ2(xµ)ds[3],whereΩ2isaconformaltransformation.Thusitisobviousthatξµ=dxµ/dsiffiniteandnon-vanishinginthelimitwillvanishunderΩ2transformationprovidedthelatterdivergesthere.Thuswefindthatatleastinthedustcase,onerequiresacon-formaltransformationwhichdivergesontheapparenthorizoninthelimitofapproachtothesingularityinthenakedcaseasagainstthecoveredcasewheretheradialco-ordinatesareappropriatetodescribethesingularitystructure.5ThisjustifiesthedifferenceinthestructureofthesingularboundarynearOinfigures3and4. 6Apossiblegeneralscenario Considerthecasesofcollapseinwhichthesingularityformedmeetstheboundaryofthetrappedregion(orevencrossingitasinnakedcases)Nowitwouldbeofinteresttoexamineξingeneralontheapparenthorizonandcheckifitvanishesornotintheapproachtothesingularboundary.Ifitdoesnot,thenoneinvokesthedivergingconformaltransformationtoobtainthecorrectcausaldepiction.Theimmediatequestionwouldbethenakedorcoverednatureofsuchasingularity.Wecertainlyknowthatitisnakedinthedustcasewhentheconformaltransformationdiverges.Wepresentanargumentsug-gestingitsvalidityinageneralscenariorelaxingtheassumptionofdustandsphericalsymmetry. LetpointObetheintersectionofthesingularityandtheapparenthorizonasbefore. Theorem:NoingoingnullgeodesiccanreachpointOafteracon-formaltransformationiftheconformaltransformationdivergesatO.Proof: Consideraspace-likehypersurfacefromwhichaningoingnullgeodesicreachesOifpossible.FromtheRaychaudhariequations,itcanbeshownthatonceanullgeodesichasnegativeexpansion,itwillreachaconjugatepointafterafiniteamountofaffineparameterhaselapsed.Iftheconformaltransformationdivergesinthelimit,thenanullgeodesicreachingOwouldimplyanelapseofinfiniteamountofaffineparameter6.Thisisacontradiction.HencetheconjugatepointmustoccurbeforeOonthenullcurve,beyondwhichthegeodesiccannotbeextended.SothegeodesiccannotreachO.2 Lemma:Thereexistsaningoingnullboundary(includingO)tothepastofOifnoingoinggeodesicreachesO. Proof: Considerasequenceofingoingnullgeodesicsegments{Λntureendpointsontheapparenthorizon,theendpointsapproaching}withfu-Oasn→∞.LettherebenoingoingnullboundarytothepastofO,ifpossible.Thentherewillbealimitingnullgeodesicof{ΛnreachesO.Thiscontradictstheprevioustheorem.2 }whichInthePenrosediagram(figure4)onecanimagineaningoingnullgeodesicwhichreachesthenullsingularboundaryatpointP.Thisistheconjugatepointforthatgeodesic.WehavesimplyjustifiedthattherewillbeaboundarytothespacetimeinplaceofthegeodesiccurvebetweenPandO. IftheapparenthorizonisspacelikeintheapproachtoO,theaboveportionofboundaryiscertainlyexposedintotheuntrappedregionandisthereforenaked.Onemayaskiftheapparenthorizonisalways spacelikeinthenakedcase.(Itiscertainlytruefordust[9]).IfasingularportiontothepastofOexists,thenitcannotbetrapped.IfsuchaportionexistedthenitwouldsimplyappearfromaPenrosediagramwithsuchaportionthatcausalcurveswouldemanatefromthem.Theseargumentsaremadeprecisebelow(FordefinitionsofIFs,ProperIFs,andTIFs,see[2],[4]). Theorem:ExistenceofaningoingnullboundarytothepastofOimpliestheexistenceofTIFs.(TheportionoftheboundarycontainstheidealpointofaTIF) Proof: Considerasequence{Λnoutthisproof.Alsonote}thatasbefore.J+(Λi)This⊂J+choice(Λj)forisallfixedj>through-i(Thenullcurvesaresuccessivelytothepast).SinceeachΛihasafutureendpointontheapparenthorizonEi,allpointsofΛiexceptEiareuntrapped.ChooseonesuchpointQi.I+(Qi)isnonempty.BychoosingQi+1tothecausalpastofQiforeveryi(wecanalwaysdothatsincethenullcurvesaresuccessivelytothepast),oneobtainsasequenceof(proper)indecomposablefuturesetsofQiwhicharenested.(Onemaybeginthesequenceatanyi)ThelimitingIFasi→∞isthereforenonempty. ThisIFwillbeproperiffthereisalimitof{Qnspacetime.ThereisaboundarytothepastofO.}whichThereforeisaatpartleastofoneQsequence(constructedasdescribedabove)existswhichfailstohavealimitingQwithinspacetime.7ConsiderthisQsequence(thereareactuallyanuncountablyinfiniteofthem).Thecorrespond-inglimitingIFoftheQiswillbeaTIFsincethereisnopointinspacetimeofwhichitisthefuture.2 7SummaryandConclusion Thetangentvectorfieldtoanullgeodesiccongruencebeingthoughtofas‘fluxdensity’ofacongruenceofgeodesicsisexaminedforbe-haviourontheapparenthorizonintheapproachtothesingularity(pointO)inthedustcollapsemodel.Thereisacorrelationwiththepropertyofnakednesswiththisbehaviour.DemandingthatthevectorvanishesatthecoveredpointOforcesthedivergenceoftheconformaltransformationatOwhichleadstothePenrosediagramforthenakedscenario.Sincethefluxvanishesinthecoveredcase,thereisnosuchdivergenceandhencethePenrosediagramsinthetwocasesdiffer.OnedemandsthatthefluxvanishesatOinageneralcollapsescenarioonthegroundsthatOiscoveredwhencalculatedusingametricexhibitingthecorrectcausalstructure,andincaseitdoesnot,oneusesasuitableconformaltransformation(i.eonewhichdivergesatO)inordertoobtainthecorrectcausalstructurenearO.WeshowthattherewillbenoingoingnullgeodesicreachingOifthelatteristhecaseandarguethatitindicatestheexistenceofaportionofsingularitywhichisuntrapped. Inconclusion,wehaveshownthattheinformationaboutwhetherthesingularityformedincollapseisnakediscontainedattheintersec-tionoftheapparenthorizonandsingularboundaryinthesphericaldustcase.Wealsosuggestthatitholdsinthecaseofageneralcol-lapse.Itshouldalsobenotedthattheprocedureofcheckingifanappropriateconformaltransformationisnecessarydoesnotdirectlyinvolvecheckingforemergenceofcausalcurvesfromthesingularity. References [1]R.SchoenandS.T.YauCommun.Math.Phys(1984)90575.[2]R.PenroseinBlackHolesandRelativisticStarsed.R.M.Wald (1990)UniversityofChicagoPress.[3]R.M.WaldGeneralRelativity(1984)UniversityofChicagoPress.[4]S.W.HawkingandG.F.R.EllisTheLargeScaleStructureof Spacetime(1973)CambridgeUniversityPress.[5]P.R.GarabedianPartialDifferentialEquations(1964)Wiley 15 [6]T.P.SinghandP.S.JoshiClass.Quant.Grav.(1996)13559and referencestherein.[7]SukratuBarve,T.P.SinghandCenaloVazPhys.Rev.D(2000) 62084021[8]SukratuBarve,T.P.Singh,CenaloVazandLouisWittenClass. Quant.Grav.(1999)161727[9]S.Jhingan,P.S.Joshi,T.P.SinghClass.Quant.Grav.(1996)13 3057 16 Singularity Boundary of cloud App.Hor. Event Hor. Figure1:Collapseofsphericaldustleadingtoacoveredsingularity 17 SingularityApp.Hor.NullGeo.EventHorizon Figure2:Collapseofsphericaldustleadingtoanakedsingularity 18 Singularity O App.horizon Boundary ofcloud Figure3:PenroseCarterdiagramforcollapseofsphericaldustleadingtoacoveredsingularity 19 Singularity O App. hor. Nakedsingularportion Boundaryof cloud Figure4:Penrose-Carterdiagramforcollapseofsphericaldustleadingtoa(locally)nakedsingularity 20 O Ei+2 Ei+1 Ei QiQi+1Qi+2Sequenceof null curves.App. Hor. Boundary to the past of O. P Figure5:ConstructionofasequenceofingoingnullgeodesicsapproachingO. 21 因篇幅问题不能全部显示,请点此查看更多更全内容