如图,已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.
(1)求该抛物线的解析式;
(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;
(3)如图(2),若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.
【答案】
解:(1)由题意可知:解得:∴抛物线的解析式为:y=-x2-
2x+3;(2)∵△PBC的周长为:PB+PC+BC∵BC是定值,∴当PB+PC最小时,△PBC的周长最小,∵点A、点B关于对称轴I对称,∴连接AC交l于点P,即点P为所求的点∵AP=BP∴△PBC的周长最小是:PB+PC+BC=AC+BC∵A(-3,0),B(1,0),C(0,3),∴
,
;(3)①∵抛物线y=-x2-2x+3顶点D的坐标为(-1,4)∵A(-3,
0)∴直线AD的解析式为y=2x+6∵点E的横坐标为m,∴E(m,2m+6),F(m,-m2-2m+3)∴EF=-m2-2m+3-(2m+6)=-m2-4m-3∴S=S△DEF+S△AEF
=-m2-4m-3;②S=-m2-
4m-3=-(m+2)2+1;∴当m=-2时,S最大,最大值为1此时点E的坐标为(-2,2).
【题型】解答题
• 如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.
(1)求直线CD的解析式;
(2)求抛物线的解析式;
(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;
(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
答案
考点:
二次函数综合题.
分析:
(1)利用待定系数法求出直线解析式;
(2)利用待定系数法求出抛物线的解析式;
(3)关键是证明△CEQ与△CDO均为等腰直角三角形;
(4)如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.
利用轴对称的性质、两点之间线段最短可以证明此时△PCF的周长最小.
如答图③所示,利用勾股定理求出线段C′C″的长度,即△PCF周长的最小值.
解答:
解:(1)∵C(0,1),OD=OC,∴D点坐标为(1,0).
设直线CD的解析式为y=kx+b(k≠0),
将C(0,1),D(1,0)代入得:,
解得:b=1,k=﹣1,
∴直线CD的解析式为:y=﹣x+1.
(2)设抛物线的解析式为y=a(x﹣2)2+3,
将C(0,1)代入得:1=a×(﹣2)2+3,解得a=.
∴y=(x﹣2)2+3=x2+2x+1.
(3)证明:由题意可知,∠ECD=45°,
∵OC=OD,且OC⊥OD,∴△OCD为等腰直角三角形,∠ODC=45°,
∴∠ECD=∠ODC,∴CE∥x轴,则点C、E关于对称轴(直线x=2)对称,
∴点E的坐标为(4,1).
如答图①所示,设对称轴(直线x=2)与CE交于点F,则F(2,1),
∴ME=CM=QM=2,∴△QME与△QMC均为等腰直角三角形,∴∠QEC=∠QCE=45°.
又∵△OCD为等腰直角三角形,∴∠ODC=∠OCD=45°,
∴∠QEC=∠QCE=∠ODC=∠OCD=45°,
∴△CEQ∽△CDO.
(4)存在.
如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.
(证明如下:不妨在线段OD上取异于点F的任一点F′,在线段QE上取异于点P的任一点P′,连接F′C″,F′P′,P′C′.
由轴对称的性质可知,△P′CF′的周长=F′C″+F′P′+P′C′;
而F′C″+F′P′+P′C′是点C′,C″之间的折线段,
由两点之间线段最短可知:F′C″+F′P′+P′C′>C′C″,
即△P′CF′的周长大于△PCE的周长.)
如答图③所示,连接C′E,
∵C,C′关于直线QE对称,△QCE为等腰直角三角形,
∴△QC′E为等腰直角三角形,
∴△CEC′为等腰直角三角形,
∴点C′的坐标为(4,5);
∵C,C″关于x轴对称,∴点C″的坐标为(﹣1,0).
过点C′作C′N⊥y轴于点N,则NC′=4,NC″=4+1+1=6,
在Rt△C′NC″中,由勾股定理得:C′C″===.
综上所述,在P点和F点移动过程中,△PCF的周长存在最小值,最小值为.
点评:
本题是中考压轴题,综合考查了二次函数的图象与性质、待定系数法、相似三角形、等腰直角三角形、勾股定理、轴对称的性质等重要知识点,涉及考点较多,有一点的难度.本题难点在于第(4)问,如何充分利用轴对称的性质确定△PCF周长最小时的几何图形,是解答本题的关键.
如图已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3).设抛物线的顶点为D,求解下列问题:
(1)求抛物线的解析式和D点的坐标;
(2)过点D作DF∥y轴,交直线BC于点F,求线段DF的长,并求△BCD的面积;
(3)能否在抛物线上找到一点Q,使△BDQ为直角三角形?若能找到,试写出Q点的坐标;若不能,请说明理由.
已知抛物线y=ax2+bx+c的顶点A(2,0),与y轴的交点为
B(0,-1).
(1)求抛物线的解析式;
(2)在对称轴右侧的抛物线上找出一点C,使以BC为直径的圆经过抛物线的顶点A.并求出点C的坐标以及此时圆的圆心P点的坐标.
(3)在(2)的基础上,设直线x=t(0 解析:(1)已知抛物线的顶点坐标,可直接设抛物线的解析式为顶点式进行求解. (2)设C点坐标为(x,y),由题意可知易证上得 ,根据对应线段成比例得出 .过点C作的关系式 轴于点D,连接AB,AC.,再根据点C在抛物线 ,联立两个关系式组成方程组,求出的值,再根据点C所在的象限 确定点C的坐标。P为BC的中点,取OD中点H,连PH,则PH为梯形OBCD的中位线.可得 ,故点H的坐标为(5,0)再根据点P在BC上,可求出直线BC的解 析式,求出点P的坐标。 (3)根据,得,所以求的最大值就是求 MN的最大值,而M,N两点的横坐标相同,所以MN就等于点N的纵坐标减去点M的纵坐标,从而形成关于MN长的二次函数解析式,利用二次函数的最值求解。 解:(1) ∵抛物线的顶点是A(2,0),设抛物线的解析式为. 由抛物线过B(0,-1) 得,∴. ∴抛物线的解析式为. 即. (2)设C的坐标为(x,y). ∵A在以BC为直径的圆上.∴∠BAC=90°. 作CD⊥x轴于D ,连接AB、AC. ∵,∴ ∴ △AOB∽△CDA. ∴ ∴OB·CD=OA·AD. 即1·=2(x-2).∴=2x-4. ∵点C在第四象限. ∴ 由解得 . ∵点C在对称轴右侧的抛物线上. ∴点C的坐标为 (10,-16).∵P为圆心,∴P为BC中点. 取OD中点H,连PH,则PH为梯形OBCD的中位线. ∴PH=(OB+CD)=. ∵D(10,0)∴H (5,0)∴P (5, ). 故点P坐标为(5,). (3)设点N的坐标为,直线x=t(0 所以 设直线BC的解析式为,直线BC经过B(0,-1)、C (10,-16) 所以成立,解得: 所以直线BC的解析式为,则点M的坐标为. MN== == 所以,当t=5时,有最大值,最大值是. 点拨:(1)已知抛物线的顶点坐标(h,k)一般可设其解析式为值问题一般考虑根据已知条件构造二次函数求解. .(2)求最 如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1,0),C(0,-3). (1)求抛物线的解析式; (2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标; (3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由. 【答案】 解:(1)由于抛物线y=ax2+bx+c经过A(-3,0),B(1,0),可设抛物线的解析式为:y=a(x+3)(x-1),将C点坐标(0,-3)代入,得:a(0+3)(0-1)=5,解得a=1,则y=(x+3)(x-1)=x2+2x-3,所以抛物线的解析式为:y=x2+2x-3;(2)过点P作x轴的垂线,交AC于点N.设直线AC的解析式为y=kx+m,由题意,得 ,解 得,∴直线AC的解析式为:y=-x-3.设P点坐标为(x,x2+2x-3),则点N 的坐标为(x,-x-3),∴PN=PE-NE=-(x2+2x-3)+(-x-3)=-x2-3x.∵S△PAC=S△PAN+S△PCN,∴值,此时点P的坐标为 ,∴当 时,S有最大 ;(3)在y轴上是否存在点M,能够使得△ADE是直角三 角形.理由如下:∵y=x2+2x-3=y=(x+1)2-4,∴顶点D的坐标为(-1,-4),∵A(-3,0),∴AD2=(-1+3)2+(-4-0)2=20.设点M的坐标为(0,t),分三种情况进行讨论:①当A为直角顶点时,如图3①,由勾股定理,得AM2+AD2=DM2,即(0+3)2+(t-0)2+20=(0+1)2+(t+4)2,解得 ,所以点M的坐标为 ;②当D为直角顶点 时,如图3②,由勾股定理,得DM2+AD2=AM2,即(0+1)2+(t+4)2+20=(0+3)2+(t-0)2,解得 ,所以点M的坐标为 ;③当M为直角顶点时,如图3③,由勾 股定理,得AM2+DM2=AD2,即(0+3)2+(t-0)2+(0+1)2+(t+4)2=20,解得t=-1或-3,所以点M的坐标为(0,-1)或(0,-3);综上可知,在y轴上存在点M,能够使得△ADE是直角三角形,此时点M的坐标为 或 或(0,-1)或(0,-3). 1、如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2. (1)求抛物线的函数表达式; (2)设P为对称轴上一动点,求△APC周长的最小值; (3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为______. (1)根据抛物线对称轴的定义易求A(1,0),B(3,0).所以1、3是关于x的一元二次方程x2+bx+c=0的两根.由韦达定理易求b、c的值; (2)如图,连接AC、BC,BC交对称轴于点P,连接PA.根据抛物线的对称性质得到PA=PB,则△APC的周长的最小值=AC+AP+PC=AC+BC,所以根据两点间的距离公式来求该三角形的周长的最小值即可; (3)如图2,点D是抛物线的顶点,所以根据抛物线解析式利用顶点坐标公式即可求得点D的坐标. 【解析】 (1)如图,∵AB=2,对称轴为直线x=2. ∴点A的坐标是(1,0),点B的坐标是(3,0). ∵抛物线y=x2+bx+c与x轴交于点A,B, ∴1、3是关于x的一元二次方程x2+bx+c=0的两根. 由韦达定理,得 1+3=-b,1×3=c, ∴b=-4,c=3, ∴抛物线的函数表达式为y=x2-4x+3; (2)如图1,连接AC、BC,BC交对称轴于点P,连接PA. 由(1)知抛物线的函数表达式为y=x2-4x+3,A(1,0),B(3,0), ∴C(0,3), ∴BC==3,AC==. ∵点A、B关于对称轴x=2对称, ∴PA=PB, ∴PA+PC=PB+PC. 此时,PB+PC=BC. ∴点P在对称轴上运动时,(PA+PC)的最小值等于BC. ∴△APC的周长的最小值=AC+AP+PC=AC+BC=3+; (3)如图2,根据“菱形ADBE的对角线互相垂直平分,抛物线的对称性”得到点D是抛物线y=x2-4x+3的顶点坐标,即(2,-1), 当E、D点在x轴的上方,即DE∥AB,AE=AB=BD=DE=2,此时不合题意, 故点D的坐标为:(2,-1). 故答案是:(2,-1). • 如图,已知抛物线与x轴交于点A(﹣2,0),B(4,0),与y轴交于点C(0,8). (1)求抛物线的解析式及其顶点D的坐标; (2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由; (3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度? 答案 解:(1)设抛物线解析式为y=a(x+2)(x﹣4). 把C(0,8)代入,得a=﹣1. ∴y=﹣x2+2x+8=﹣(x﹣1)2+9, 顶点D(1,9);(2分) (2)假设满足条件的点P存在.依题意设P(2,t). 由C(0,8),D(1,9)求得直线CD的解析式为y=x+8, 它与x轴的夹角为45°. 设OB的中垂线交CD于H,则H(2,10). 则PH=|10﹣t|,点P到CD的距离为. 又.(4分) ∴. 平方并整理得:t2+20t﹣92=0,解之得t=﹣10±8. ∴存在满足条件的点P,P的坐标为(2,﹣10±8).(6分) (3)由上求得E(﹣8,0),F(4,12). ①若抛物线向上平移,可设解析式为y=﹣x2+2x+8+m(m>0). 当x=﹣8时,y=﹣72+m. 当x=4时,y=m. ∴﹣72+m≤0或m≤12. ∴0<m≤72.(8分) ②若抛物线向下平移,可设解析式为y=﹣x2+2x+8﹣m(m>0). 由, 有﹣x2+x﹣m=0. ∴△=1+4m≥0, ∴m≥﹣. ∴向上最多可平移72个单位长,向下最多可平移个单位长.(10分) 如果没有找到你要的试题答案和解析,请尝试下下面的试 如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8). (1)求抛物线的解析式及其顶点D的坐标; (2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由; (3)点M是直线CD上的一动点,BM交抛物线于N,是否存在点N是线段BM的中 点,如果存在,求出点N的坐标;如果不存在,请说明理由. (2013•新疆)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3). (1)求抛物线的解析式; (2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由; (3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ ACE的最大面积及E点的坐标. 解:∵抛物线y=ax2+bx+3经过点A(1,0),点C(4,3), 如图,设过点E与直线AC平行线的直线为y=x+m, 因篇幅问题不能全部显示,请点此查看更多更全内容