Networks
MaciejKurant,PatrickThiran
(Dated:February2,2008)
Theknowledgeofreal-lifetrafficpatterniscrucialforgoodunderstandingandanalysisoftrans-portationsystems.Thisdataisquiterare.Inthispaperweproposeanalgorithmforextractingboththerealphysicaltopologyandthenetworkoftrafficflowsfromtimetablesofpublicmasstrans-portationsystems.Weapplythisalgorithmtotimetablesofthreelargetransportationnetworks.Thisenablesustomakeasystematiccomparisonbetweenthreedifferentapproachestoconstructagraphrepresentationofatransportationnetwork;theresultinggraphsarefundamentallydifferent.Wealsofindthatthereal-lifetrafficpatternisveryheterogenous,bothinspaceandtrafficflowr 2006aMintensities.
PACSnumbers:89.75.Hc,89.75.Fb,89.40.Bb
42 I.INTRODUCTION
]phIntherecentyears,studiesoftransportationnetworks-chavedrawnasubstantialamountofattentioninthephysicscommunity.Thegraphsderivedfromthephysi-socalinfrastructureofsuchnetworkswereanalyzedonthe.sexamplesofapowergrid[1,2],arailwaynetwork[3,4],croadnetworks[5,6,7,8,9],pipelinenetwork[4]orurbanismasstransportationsystems[10,11,12,13,14].Theseystudieshaveoneimportantfeatureincommon-theyfo-hcusexclusivelyonthetopologyofthenetwork,andtheyp[donottakeintoaccountthereal-lifetrafficpattern.This makestheviewveryincomplete,becausecarryingtraf-2ficistheultimategoalofeverytransportationsystem.vFacingthelackofreal-lifetrafficdata,someauthorstry15toestimatethetrafficpatternbasedexclusivelyonthe1topology.Probablythemostcommonloadestimator0isbetweenness(usede.g.,in[15,16,17,18,19,20]),1whichassumesthateachpairofnodesexchangesthe5sameamountoftraffic.Butthereal-lifetrafficpatternsareinfactveryheterogenous,bothinspaceandtraffic/0sflowintensities.Thereforethemostimportantnodesandcedgesfromatopologicalpointofviewmightnotneces-issarilycarrythemosttraffic.In[21]weshowthatinytypicaltransportationnetworksthecorrelationbetweenhtherealloadandthebetweennessisverylow.Thereforep:itisessentialforsomeapplicationstoknowtherealtraf-vficpattern.
iXInterestingly,thenetworksoftrafficflowswerestudiedseparately,seetheexampleofflowsofpeoplewithinaracity[22],andcommutingtrafficflowsbetweendifferentcities[23].Thesestudies,inturn,neglecttheunderlyingphysicaltopology,makingtheanalysisincomplete.Forinstance,itisimpossibletodetectthemostloadedphys-icaledges,whichmighthaveacrucialmeaningfortheresilienceofthesystem.Acomprehensiveviewofthesystemoftenrequirestoanalyzebothlayers(physicalandtraffic)together.
Unfortunately,thedatasetsincludingbothphysicaltopologyandtrafficflowsarerathersparse,anddiffi-culttoget.Inthispaperweproposeanapproachtoextractthephysicalstructureandthenetworkoftraf-
ficflowsfromtimetables.Timetablesoftrains,buses,trams,metrosandothermeansofmasstransportation(henceforthcalledvehicles)arepubliclyavailable.Theyprovideuswiththeavailableconnectionsandtheirtimes.Timetablesalsocontaintheinformationaboutthephys-icalstructureofthenetworkandthetrafficflowsinit,but,asweshowlater,theyoftenrequireanontrivialpre-processingtoberevealed.
II.
SPACESANDTHEDIFFICULTYOFTHE
PROBLEM
Inordertopositionourcontributionintherangeofworksinthefield,webeginwithasystematicdefinitionofthetopologyoftransportationsystems.Thesetofnodesisdefinedbythesetofallstations(trainstations,busstops,etc).Itisnotobvious,however,whatshouldbeinterpretedasanedge.Itschoicedependsonwhatwewanttobereflectedbythetopologyofthephysicalgraph.Intheliteraturethereareessentiallythreeap-proachesthatdefinethreedifferent‘spaces’:herewecallthem‘space–of–changes’,‘space–of–stops’and‘space–of-–stations’:
Inspace–of–changes,twostationsareconsideredtobeconnectedbyalinkwhenthereisatleastonevehiclethatstopsatbothstations.Inotherwords,allstationsusedbyasinglevehiclearefullyinterconnectedandformaclique.Thisapproachneglectsthephysicaldistancebe-tweenthestations.Instead,intheresultingtopology,thelengthofashortestpathbetweentwoarbitrarystationsAandBisthenumberofchangesofmeanoftransporta-tiononeneedstogetfromAtoB[39].Thisapproachwasusedin[3,12,13];inthelattertheauthorsusedthetermspaceP.
Inspace–of–stops,twostationsareconnectediftheyaretwoconsecutivestopsonarouteofatleastoneve-hicle[13].Herethelengthofashortestpathbetweentwostationsistheminimalnumberofstopsoneneedstomake.Notethatthenumberofstationstraversedonthewaymightbelarger,becausethevehiclesdonotneces-sarystoponallofthem.
2
H
F
B
C
A
D
E
(b)
space–of–changes
G
o FA
B
H
G
D
C
E
(d)space–of–stations
FIG.1:(Coloronline)Anillustrationofthetransportationnetworktopologyinthreespaces.(a)Theroutesofthreevehicles.TherouteofLine2passesthroughnodeConthewayfromBtoD,butthevehicledoesnotstopthere.(b)Thetopologyinspace–of–changes.Eachrouteresultsinaclique.Anedgeisindicatedbytwocolors,whenitoriginatesfromtworoutes,butismergedintoasinglelink.(c)Thetopologyinspace–of–stops.The“shortcut”B-Disalegitimateedgeinthisspace.(d)Thetopologyinspace–of–stations.Thisgraphreflectsthetopologyofthereal-lifeinfrastructure.
Inspace–of–stations,twostationsareconnectedonlyiftheyarephysicallydirectlyconnected(withnostationinbetween).Thisreflectsthetopologyofthereal-lifein-frastructure.Here,thelengthofashortestpathbetweentwostationsistheminimalnumberofstationsonehastotraverse(stoppingornot).Thisapproachwasusedin[4,10,11,14].
InFig.1wegiveanillustrationofthethreespaces.Itiseasytoseethatthegraphinspace–of–stationsisasubgraphofthegraphinspace–of–stops,whichinturnisasubgraphofthegraphinspace–of–changes.Thetopologiesinspace–of–changesandspace–of–stopscanbedirectlyobtainedfromtimetables.Inspace–of–changes,foreachvehicle,wefullyconnectallstationsitstopsat.Thenwesimplifytheresultinggraphbydeletingmulti-edges.Inspace–of–stops,weconnectev-erytwoconsecutivestopsinroutesofvehicles.AsshowninFig.1c,thetopologyinspace–of–stopscanhaveshort-cutlinksthatdonotexistinthereal-lifeinfrastructure.Theseshortcutsshouldbeeliminatedinthespace–of-–stationstopology,whichmakesitmorechallengingtoobtain.Tothebestofourknowledge,theonlyworkonextractingtherealphysicalstructure(thetopologyinspace–of–stations)fromtimetableswasdoneinthecontextofrailwaynetworksinthePhDdissertationofAnnegretLebers[24].Theproposedsolutionfirstob-tainsthephysicalgraphinspace–of–stops.Next,specificstructuresintheinitialphysicalgraph,callededgebun-dles,aredetected.TheHamiltonpaths[40]withinthesebundlesshouldindicatethereal(non-shortcut)edges.Unfortunately,thebundlerecognitionproblemturnedouttobeNP-complete.Theheuristicsproposedin[24]resultinacorrectreal/shortcutclassificationof80%ofedgesinthestudiedgraphs.Theapproachweproposeinthispaperisbasedonsimpleobservationsthatwere
omittedin[24].Thisresultsinamuchsimplerandmoreeffectivealgorithm.
III.RELATEDWORK
Timetableshavebeenusedasadatasourceforanet-workconstructionin[3,13].However,thetopologiesobtainedintheseworkswereeitherinspace–of–changesorinspace–of–stops;neitherofthemreflectedthereal-lifeinfrastructure.Moreover,therealtrafficpatternswerenotconsideredinthesestudies.Thisisunderstand-able,becauseitisdifficulttointerpretatrafficflowinspacesofchangesandstops.Doesthe“traffic”onashortcutlinkhaveanyphysicalmeaning?Weknowthatthistrafficactuallytraversesothernon-shortcutlinksthatexistinreality.Incontrast,inspace–of–stations,thetrafficflowshaveclear,unambiguousandnaturalin-terpretation.
Anotherclassofnetworksthatcanbeconstructedwiththehelpoftimetablesareairportnetworks[6,25,26,27].There,thenodesaretheairports,andedgesaretheflightconnections.Theweightofanedgereflectsthetrafficonthisconnection,whichcanbeapproximatedbythenum-berofflightsthatuseitduringoneweek.Inthiscase,boththetopologyandthetrafficinformationareexplic-itlygivenbytimetables.Thisisbecausetheroutesofplanesarenotconstrainedtoanyphysicalinfrastructure,asopposedtoroadsforcarsorrail-tracksfortrains.Sothereareno“real”linksand“shortcut”links.Inasensealllinksarereal,andthetopologiesinspace–of–stopsandinspace–of–stationsactuallycoincide.
Inferringthespace–of–stationstopologyfromtimeta-blesbecomessimplealsoinanotherspecialcase,wherethevehiclesstopateachstationtheytraverse(e.g.,
inmanysubwaynetworks).Thisnaturallyeliminatestheshortcuts,makingthetopologiesinspace–of–stopsandstationsidentical.Thisisnottrueinageneralcase,withbothlocalandexpressvehicles.
Inthereminderofthispaper,weintroducenecessarynotationinSectionIV.Next,inSectionVwegiveanal-gorithmthatextractstherealphysicalstructure(atopol-ogyinspace–of–stations)andthenetworkoftrafficflowsfromtimetables.InSectionVIwetestouralgorithmontimetablesofthreelargetransportationnetworksatthreedifferentscales:city,countryandcontinent.Wealsoan-alyzetheresultingphysicaltopologiesandcomparethemwiththoseobtainedbyalternativeapproaches.Finally,inSectionVIIweconcludethepaper.
IV.NOTATIONA.
Twolayers
Wefollowthetwo-layerframeworkintroducedin[21].
Thelower-layertopologyiscalledaphysicalgraphGφ=(Vφ,Eφ),andtheupper-layerλtopologyiscalledalogicalgraphGλ=(Vλ,E).Weassumethatφthesetsofnodesatbothlayersareidentical,i.e.,Vand≡λVλ,butasageneralrule,wekeeptheindexesφtomakethedescriptionunambiguous.LetN=|Vφnumberofnodes.Everylogicaledgeeλ|==|Vλ{u|λ,bevλthemappedonthephysicalgraphasapathM(eλ)⊂}Gisφconnectingλthenodesuφandvφ,correspondingtouλandv.(Apathisdefinedbythesequenceofnodesittraverses.)ThesetofpathscorrespondingtoalllogicaledgesiscalledamappingM(Eλ)ofthelogicaltopologyonthephysicaltopology.
Inthefieldoftransportationnetworkstheundirected,unweightedphysicalgraphGφcapturesthetopologyofthephysicalinfrastructure(i.e.,inspace–of–stations),andtheweightedlogicalgraphGλreflectstheundirectedtrafficflows.Everylogicaledgeeλiscreatedbyconnect-ingthefirstandthelastnodeofthecorrespondingtrafficflow,andbyassigningaweightw(eλ)thatrepresentstheintensityλofthisflow.ThemappingM(eλ)oftheedgeeisthepathtakenbythisflow.
B.Timetabledata
Wetakealistofallvehiclesdepartinginthesystem
withinsomeperiod(e.g.,oneweekday).DenotebyR={ri}i=1..|R|thelistofroutesfollowedbythesevehicles,where|R|isthetotalnumberofvehicles.Arouteriofithvehicleisdefinedbythelistofnodesittraverses.Notethatsincethereareusuallymorevehicles(thanone)followingthesamepathononeday,someoftheroutesmaybeidentical.
3
V.
ALGORITHM
Thealgorithmhasthreephases.Inthefirstone,initialization,basedonthesetofroutesR,wecreatethesetofnodesVφ=Gφstop=(Vφ
,EφVλandthephysicaltopology
stop)inspace–of–stops.Inthesecond,
mainphase,thesetsRandEφ
detectinganderasingthestopareiterativelyre-finedbyshortcutlinksinthephysicalgraphGφstop,resultinginthephysicaltopology
Gφstat=(Vφ
,Eφwestat)inspace–of–stations.Finally,inthethirdphase,groupthevehicleswithidenticalroutes,andobtainthelogicalgraphGλandthemappingM(Eλ)ofthelogicaledgesonthephysicalgraphGφbeloweachphaseseparately.
stat.Wede-scribeA.
Phase1-initialization
Inthisphaseweinterpreteverytwoconsecutivenodesinanyrouteriweconnectthese∈Rnodesasdirectlywithalink,connected.whichcanConsequently,bewrittenas
Eφ
stop=
E(ri)i=1..|R|
whereE(ri)isthesetofallpairsofadjacentnodesinri
(i.e.,alledgesinri).Thisresultsinthephysicaltopology
Gφstop=(Vφ
,Eφstop)inspace–of–stops.
B.
Phase2-deletingshortcuts
Inthisphase,ateachiteration,wedetectashortcutinthesetofphysicaledges,deleteit,andupdaterithatusethisshortcut.Denotebyeφeφ
allroutes
(1),(2)thetwoend-nodesofeφ,andbyRev(Peφ)thereversedversionofPeφ(thesequencefromthelastnodetothefirstone).Thealgorithmisasfollows:
1.Eφstat:=Eφstop
2.Findatuple(eφ,ri)suchthateφisashortcutforri:
eφ(1)∈riandeφ
(2)∈ri
andeφ∈/E(ri).3.IFno(eφ,ri)foundTHENRETURNEφstatandR.4.Peφ:=subpathofrifromeφφ(1)toe(2)
5.FORallrj•∈RDO:
•IfIf((eeφ,eφ
(1)(2))∈rjTHENreplaceitwithPeφ
φφ
(2),e(1))∈rjTHENreplaceitwithRev(Peφ)
6.Eφstat:=Eφstat\\{eφ}
7.GOTO2
InStep2,welookforaphysicalφlinkthatisashort-cut.Wedeclareaphysicallinketobeashortcut,ifthereexistsarouterinonconsecutivenodesin∈Rri,.suchForthatexample,eφconnectstwoinFig.1c,eφ={B,D}isashortcutbecauseitconnectstwonotneighboringnodesintherouter1ofLine1.Ifnophysi-caledgecanbedeclaredinStep3,returningEφ
ashortcut,thealgorithmquits
statandR.Otherwise,inStep4,wefindthepathPeφthatthisshortcutshouldtake.InFig.1cthispathisPeφ=(B,C,D).InStep5,weup-dateφthesetofroutesRbyreplacingeveryshortcutlinkeineveryrouteusingitwiththecorrespondingpathPeφ.Inourexample,theupdatedrouteofLine2be-comesr2=(A,B,C,D,E).ItisthusidenticaltotherouteofLine1.Finally,inStep6wedeletetheshort-cuteφfromthephysicalgraph.Weiteratethesestepsuntilnoshortcutisfound(Step2).Theresultingphys-icalgraphGφstat=(Vφ
,Eφstat)⊂Gφstop,isagraphinspace–of–stations.
C.
Phase3-groupingthesameroutestogether
Finally,basedonthelistRofroutesupdatedinphase2,wefindgroupsofvehiclesthatfollowthesamepath(inλanydirection).Eachsuchgroupdefinesoneedgeeinthelogicalgraph;eλconnectsthefirstandthelastnodeoftheroute.Thenumberλofvehiclesthatfollowthisroutebecomestheweightw(e)ofthelogicaledgeeλ;therouteitselfbecomesthemappingM(eλ)ofeλonthephysicalgraph.
Denotebyri(first),ri(last)thefirstandthelastnodesinri,andbyE(M(eλ))thesetofallphysicaledgesinthemappingofeλ.Now,Phase3canbestatedasfollows:1.Eλ=∅,M=∅
2.FORi=1TO|R|DO:•eλi={ri(first),ri(last)•IFELSEeλi∈λw(}
eλEEλTHEN=Eλ{eλi):=w(eλ
ii},M(eλ)+1i)=ri,w(eλi)=1
3.Eφ
stat=eλ∈EλE(M(eλ))IntheexampleinFig.1,afterphase2theroutesofLine1andLine2becomeidentical;thereforeinphase3theyaregroupedtogetherdefiningalogicalwiththeweightw(eλ
edgeeλthemapping1={A,E}
1)=2andM(eλ(A,B,C,D,E).Asecondlogicaledgeiseλ
1)=
w(eλ(e2={F,H}
with2)=1andMλ
2)=(F,B,G,H).
D.
Accuracyofthealgorithm
Therearepotentialsourcesofmistakesandinaccura-ciesinourapproach.First,thelinksthatwedeleteasbeingshortcuts,mightactuallyexistinreality.However,acomparisonoftheresultsofouralgorithmwiththerealmaps(seeSectionVI)revealsveryfewdifferences,which
4
meansthatthissourceoffailuresoccursveryrarelyinrealdatasets.
Asecondproblemliesintheestimationofthetrafficpattern.Interpretingtheroutesoftrains,buses,trams,metros,etc,astrafficflowsgivesusapictureatalowlevelofgranularity.Wevieweveryvehicleasatrafficunit,regardlessofitssizeorthenumberofpeopleitcar-ries.Moreover,peopleusuallyusethesevehiclesonlyonaportionofitstotaljourney,notfromthefirsttothelaststation.Clearly,thevehicleroutesaretheresultofanoptimizationprocessthattakeintoaccountmanyfactors,suchaspeople’sdemand,continuityofthepath,travel-ingtimesandavailabilityofstock.However,webelievethattheyreflectwellthegeneraldirectionandintensityoftravels,andwetakeavehicleasabasictrafficunit.Afterall,thesearethevehiclesthatappearontheroadsandcausetraffic,notthepeopletheytransport.
VI.
ASTUDYOFTHREEREAL-LIFE
NETWORKS
Inthissectionweapplyouralgorithmtoextractthe
datafromthetimetablesofthreeexamplesoftransporta-tionnetworks,withsizesrangingfromcitytocontinent.Asanexampleofacity,wetakethemasstransporta-tionsystem(buses,tramsandmetros)ofWarsaw(WA),Poland;itstimetablesareavailableat[28].Atacountrylevel,westudytherailwaynetworkofSwitzerland(CH).Finally,weinvestigatetherailwaynetworkformedbymajortrainsandstationsinmostcountriesofcentralEurope(EU)[41].ThetimetablesofbothCHandEUnetworksareavailableat[29].ThebasicparametersofthedatasetsandoftheresultinggraphscanbefoundinTableI.
Thissectionisorganizedasfollows.First,wefocusonaparticulardatasetinordertostudytheperformanceofouralgorithm.Next,weanalyzeandcomparethephys-icalgraphsoriginatingfromallthreedatasetsineachoftheconsideredspaces.Finally,wefocusourattentiononthelogicalgraphsandtrafficflowsextractedbyouralgorithm.
A.
Anexample:Therailwaynetworkof
Switzerland(CH)
Asanillustration,letusconsidermorecloselytherailwaynetworkofSwitzerland(CH).Accordingtoourtimetable,onatypicalweekdaythereare|R|=6957differenttrainsthatfollow|Eλ(usuallythereismorethanone|train=505followingdifferenttheroutessamerouteduringoneday).OurdatacontainsN=1613stationsinSwitzerland,togetherwiththeirphysicalco-ordinates.InFig.2wepresentthegraphsobtainedfromthisdataset.ThephysicalgraphsinthethreespacesareshowninFigs.2abc.Thegraphinspace–of–stationswasobtainedwiththehelpofthealgorithmintroduced
5
(a)PhysicalgraphGφchangeinspace–of–changes(b)PhysicalgraphGφstopinspace–of–stops
(c)PhysicalgraphGφstatinspace–of–stations
(d)Realphysicalmap
(e)Logicalgraph
FIG.2:TherailwaynetworkinSwitzerland(CH).(a,b,c)Physicalgraphsinspace–of–changes,stopsandstations,respectively.
(d)TherealmapoftherailtracksinSwitzerland.(e)Thelogicalgraph.Everyedgeconnectsthefirstandthelaststationofaparticulartrainroute;itsweightreflectsthenumberoftrainsfollowingthisrouteinanydirection.
6
General
Area[km2]
WA(Warsaw)
41’300
EU(Europe)
48531533
Physicalgraph
|R|Spacekφlφ
784374
221224976
183290
changes24.63.6
6’957stops2.416.3
stations2.146.6
883298
6703860048
5765184
0.6829
0.16810.0092
0.73470.34010.0129
TABLEI:Thestudieddatasets.“Area”isthesurfaceoccupiedbytheregioncoveredbythenetwork.Nisthenumberofnodes(stations/stops).|R|isthetotalnumberofvehiclesdepartinginthenetworkduringoneweekday.|Eλ|isthenumberofedgesinthelogicalgraph(numbertrafficflows);itismuchsmallerthan|R|,becausethevehiclesfollowingthesameroutearegroupedtogetherinphase3ofouralgorithm.AlltheremainingparametersarecomputedforthephysicalgraphsGφ:|Eφ|isthenumberofedges,kφistheaveragenodedegree,dφstandsforthediameter,lφistheaverageshortestpathlength,andcφistheclusteringcoefficient.
intheprevioussection.Thenumberofverticesisthesameinallthreespaces.Thenumberofedgesinspace-φ
–of–changes,|Echange|=19827,ismuchlargerthanintheothertwospaces.Althoughatfirstsightthephysicalgraphsinspace–of–stationsandinspace–of–stopslookcomparable,thelatterhasanumberof(nonexistinginreality)shortcutlinks.Foravisualverificationofcor-rectnessofouralgorithm,weshowinFig.2dtherealmapoftheSwissrailwaysystem;weobserveonlyminordifferencesbetween(c)and(d).Finally,inFig.2e,wepresentthelogicalgraphthatreflectsthetrafficflowsinthenetwork.Thisgraphisveryheterogenousbothintheweightsofedgesandinthelayoutoftraffic.
B.Thephysicalgraphinthreespaces
Howdoesthechoiceofspaceaffectthetopology?Westudyinthissectionthephysicalgraphsinthethreespaceswithrespecttothebasicmetricsoftenusedintheanalysisofcomplexnetworks.
Diameterdφ,andaverageshortestpathlengthlφ
1.
Theaverageshortestpathlengthliscomputedoverthelengthsofshortestpathsbetweenallpairsofvertices.Thediameterdisthelongestofallshortestpathlengths.Theseparametersareusuallycloselyrelated.
Thediametersandaverageshortestpathlengthsofthegraphs√inspace–of–stationsarelarge,andscaleroughlyas
101)φ102k(rP1030200400600kφ
(b)space–of–stops
(Gφstop)
100101)φk(102rP10302468kφ
(d)space–of–stops,
log-logscale
FIG.3:Nodedegreedistributionsinphysicalgraphsinthethreespaces,forthedatasetsWA,CHandEU.Plots(a-c)useasemi-logarithmicscale,plot(d)usesalog-logscale.Ifnecessary,thedataislin-binnedorlog-binned,accordingly.
3.Clusteringcoefficientsc
Wehavestudiedtheclusteringcoefficientscdefinedasaprobabilitythattworandomlychosenneighborsofanodearealsodirectneighborsofeachother[30].
Theclusteringcoefficientoftopologiesinspace–of–changesareveryhigh,whichisadirectconsequenceofaveryhighdensityandexistenceofmanycliques.Whatismoreinterestingisthatinallthreedatasets,theclus-teringcoefficientinspace–of–stopsis1-2ordersofmag-nitudelargerthaninspace–of–stations.Asinthecaseofthegraphdiameter,hereagaintheshortcutlinksturnoutplayaveryimportantroleinthetopology.
C.
Trafficflowsandthelogicalgraph
Nowweturnourattentiontothetrafficthatflowsinournetworks.Weextractedthisscarcedatawiththehelpofthealgorithmintroducedinthispaper.Aswear-guedbefore,theinterpretationoftrafficflowingthroughnetworksinspace–of–changesandstopsisrathercum-
7
12012012010010010080
80806060604040402020
20001020304050001020304050001020304050(a)WA(b)CH(c)EU
FIG.4:Thelengthsoforiginaltimetableroutes(xaxis)
versustheselengthsaftertheapplicationofouralgorithm(yaxis).Allthreedatasetsaredrawninthesamescale.
bersome.Thereforewerestrictouranalysistothetrafficflowstraversingthephysicalgraphinspace–of–stations.InFig.4wecomparethelengthsoftrafficflowsbeforeandafterapplicationofouralgorithm.Anewtrafficflowcanbeeitherequalinlengthtotheoriginalone(ifnoshortcutwasdetectedonitspath),orlonger.Weobservethatforallthreedatasets,thereisasignificantnumberofflowsthatbecomelonger.Insomecasesthisincreaseinlengthisbyasmuchas10times.Generally,thelongertheoriginalflowis,thelessextendeditgetsduringarunofouralgorithm.Thisisexpected,becausealongflowinatimetableusuallycorrespondstoalocaltrainthatstopsatallstations(i.e.,usesnoshortcuts).InFig.5wepresentbasicdistributionsmeasuredforlogicalgraphsinthethreedatasets.Recallthattheedgesinalogicalgraphreflectthetrafficflows.There-fore,thenodedegreekλisthenumberofdifferentcon-nectionsstarting/endingatthecorrespondingstation(Fig.5a).Thestrengthsλofanodeisthesumoftheweightsofneighboringedges[25];hereitisthenumberofallconnectionsstarting/endingatthisstation(Fig.5b).Finally,theweightw(eλ)ofalogicaledgeisthetrafficflowintensity(Fig.5c).
Allthreedistributionsareheavilyright-skewedmeaningthatthereisasmallnumberofnodes/edgeswithveryhighvaluesoftheobservedparameter.Weconcludethatthereal-lifetrafficpatternsareveryheterogenous,bothinspace(nodedegreeandstrength)andtrafficflowin-tensities.Thiswasshownin[21]tobethereasonofhighunpredictabilityofloaddistributionintransporta-tionnetworks.
VII.CONCLUSIONS
Theknowledgeofreal-lifetrafficpatterniscrucialintheanalysisoftransportationsystems.Thisdataisusu-allymuchmoredifficulttogetthanthepuretopologyofanetwork.Inthispaperwehaveproposedanalgo-rithmforextractingboththephysicaltopologyandthenetworkoftrafficflowsfromtimetablesofpublicmasstransportationsystems.Wehaveappliedouralgorithm
8
100101103104105100101102Pr(sλ)102sλ
(b)Nodestrengths
10010110210310410510010110210322publictransportnetworksinPoland.Phys.Rev.E,72:046127,2005.[14]I.Vragovi´c,E.Louis,andA.Diaz-Guilera.Efficiencyofinformationaltransferinregularandcomplexnetworks.Phys.Rev.E,71:036122,2005.
[15]K.-I.Goh,B.Kahng,andD.Kim.Universalbehaviorofloaddistributioninscale-freenetworks.Phys.Rev.Lett.,87(27):278701,December2001.[16]G.Szab´o,M.Alava,andJ.Kert´esz.Shortestpathsandloadscalinginscale-freetrees.Phys.Rev.E,66:026101,2002.
[17]B.Bollob´asandO.Riordan.Shortestpathsandloadscalinginscale-freetrees.Phys.Rev.E,69(3):036114,March2004.
[18]P.HolmeandBeomJunKim.Vertexoverloadbreak-downinevolvingnetworks.Phys.Rev.E,65:066109,2002.
[19]L.Zhao,K.Park,andY.-C.Lai.Attackvulnerabilityofscale-freenetworksduetocascadingbreakdown.Phys.Rev.E,70:035101(R),2004.
[20]AdilsonE.Motter.Cascadecontrolanddefenceincom-plexnetworks.Phys.Rev.Lett.,93(9):098701,2004.[21]M.KurantandP.Thiran.Layeredcomplexnetworks.physics/0510194,acceptedinPhys.Rev.Lett.,2005.[22]G.Chowell,J.M.Hyman,S.Eubank,andC.Castillo-Chavez.Scalinglawsforthemovementofpeoplebetweenlocationsinalargecity.Phys.Rev.E,68:066102,2003.[23]
AndreaDeMontis,MarcBarth´elemy,AlessandroChessa,andAlessandroVespignani.Thestructureofinter-urbantraffic:Aweightednetworkanalysis.physics/0507106,2005.
[24]AnnegretLiebers.AnalyzingTrainTimeTableGraphs.PhDthesis,UniversityofKonstanz,DepartmentofCom-puterandInformationScience,2001.[25]A.Barrat,M.Barth´elemy,R.Pastor-Satorras,andA.Vespignani.Thearchitectureofcomplexweightednet-works.Proc.Natl.Acad.Sci.USA,101(11):3747,2004.[26]L.Hufnagel,D.Brockmann,andT.Geisel.Forecastandcontrolofepidemicsinaglobalizedworld.Proc.Natl.Acad.Sci.USA,101(42):15124,2004.[27]
R.Guimer`a,S.Mossa,A.Turtschi,andL.A.N.Amaral.Theworldwideairtransportationnetwork:Anomalouscentrality,communitystructure,andcities’globalroles.
9
Proc.Natl.Acad.Sci.USA,102:7794,2005.[28]http://www.ztm.waw.pl.[29]http://www.sbb.ch.
[30]D.J.Watts.SmallWorlds.PrinctonUniversityPress,1999.
[31]JonKleinberg.Thesmall-worldphenomenon:Anal-gorithmicperspective.Proc.32ndACMSymposiumonTheoryofComputing,2000.[32]StevenH.Strogatz.Exploringcomplexnetworks.410:268,2001.
[33]R.Albert,H.Jeong,andA.-L.Barabsi.Errorandattacktoleranceincomplexnetworks.Nature,406:378,2000.[34]NaokiMasuda,HiroyoshiMiwa,andNorioKonno.Ge-ographicalthresholdgraphswithsmall-worldandscale-freeproperties.Phys.Rev.E,71:036108,2005.
[35]ThomasPetermannandPaoloDeLosRios.Spa-tialsmall-worldnetworks:Awiring-costperspective.cond-mat/0501420,2005.
[36]
AlainBarrat,MarcBarthelemy,andAlessandroVespig-nani.Theeffectsofspatialconstraintsontheevolutionofweightedcomplexnetworks.J.Stat.Mech.,pageP05003,2005.
[37]http://icawww.epfl.ch/kurant/.
[38]VamsiKalapala,VishalSanwalani,AaronClauset,andCristopherMoore.Scaleinvarianceinroadnetworks.physics/0510198,page2005.
[39]
Inthissense,agraphinspace–of–changesiscloselyrelatedtothedualinterpretationofurbanroadnet-works[5,7,38],wherestreets(ofagivenname)maptonodes,andintersectionsbetweenstreetsmaptolinksbetweenthenodes.Inatransportationnetworkinspace-–of–changes,thelengthofashortestpathisthenumberofchangesofmeanoftransportation,whereasthelengthofashortestpathinadualgraphofacityisthenumberofchangesofstreetsonthewayfromthestartingpointtodestination.
[40]Hamiltonpathisapaththatpassesthrougheveryvertexofagraphexactlyonce
[41]
IntheEUdataset,Parishasoriginallyseveralstationsthatarenotdirectlyconnectedbetweeneachother.Fol-lowingtheapproachin[4],wemergedthemintoonecom-monnode.
因篇幅问题不能全部显示,请点此查看更多更全内容