数 学 试 卷
一、选择题(共8道小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字..母处涂黑.
1.6的绝对值等于( ) A.6
B.
1 6C.1 6D.6
2.截止到2008年5月19日,已有21 600名中外记者成为北京奥运会的注册记者,创历届奥运会之最.将21 600用科学记数法表示应为( ) A.0.21610
5B.21.610
3
C.2.1610
3
D.2.1610
43.若两圆的半径分别是1cm和5cm,圆心距为6cm,则这两圆的位置关系是( ) A.内切 B.相交 C.外切 D.外离
4.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是( ) A.50,20 B.50,30 C.50,50 D.135,50 5.若一个多边形的内角和等于720,则这个多边形的边数是( )
A.5 B.6 C.7 D.8
6.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是( )
A.
1 5B.
2 5C.
1 2D.
3 5
7.若x2y30,则xy的值为( )
A.8 B.6 C.5 D.6
8.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如右图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( ) O
O O O O
P P P P P M M M M M M M M M D. B. A. C.
1 / 17
二、填空题(共4道小题,每小题4分,共16分) 9.在函数y1中,自变量x的取值范围是 . 2x132A D B
E C
10.分解因式:aab .
11.如图,在△ABC中,D,E分别是AB,AC的中点, 若DE2cm,则BC cm.
b2b5b8b1112.一组按规律排列的式子:,3,3,4,…(ab0),其中第7个式子是 ,第n个
aaaa式子是 (n为正整数).
三、解答题(共5道小题,共25分) 13.(本小题满分5分)
1计算:82sin45(2).
301 14.(本小题满分5分)
解不等式5x12≤2(4x3),并把它的解集在数轴上表示出来. 15.(本小题满分5分)
已知:如图,C为BE上一点,点A,D分别在BE两侧.AB∥ED,
B
ABCE,BCED. 求证:ACCD. 证明:
3 2 1 0 1 2 3 A C E
D
2 / 17
16.(本小题满分5分)
如图,已知直线ykx3经过点M,求此直线与x轴,y轴的交点坐标. ykx3 y 解: 17.(本小题满分5分) 已知x3y0,求
2xyx22xyy2(xy)的值. 解:
四、解答题(共2道小题,共10分) 18.(本小题满分5分)
如图,在梯形ABCD中,AD∥BC,ABAC,B45,BC42,求DC的长.
解:
3 / 17
M 1 2 O 1 x A D AD2,B C 19.(本小题满分5分)
已知:如图,在Rt△ABC中,C90,点O在AB上,以O为圆心,OA长为半径的D 圆与AC,AB分别交于点D,E,且CBDA. (1)判断直线BD与O的位置关系,并证明你的结论;
A B
E (2)若AD:AO8:5,BC2,求BD的长. O 解:(1)
(2)
五、解答题(本题满分6分)
20.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:
“限塑令”实施后,使用各种
“限塑令”实施前,平均一次购物使购物袋的人数分布统计图 用不同数量塑料购物袋的人数统计图 ..其它 人数/位 5% 收费塑料购物袋 _______% 40 37 35 30 押金式环保袋 26 25 24% 20 15 11 9 10 4 3 5 自备袋 0 “限塑令”实施后,塑料购物袋使用后的处理方式统计表 1 2 3 4 5 6 7 塑料袋数/个 46% 图2 处理方式 图1 直接丢弃 直接做垃圾袋 再次购物使用其它 选该项的人数占 5% 35% 49% 11% 总人数的百分比 请你根据以上信息解答下列问题: (1)补全图1,“限塑令”实施前,如果每天约有2 000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?
C 4 / 17
(2)补全图2,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对...........环境保护带来积极的影响. 解:(1)
(2)
六、解答题(共2道小题,共9分) 21.(本小题满分5分)列方程或方程组解应用题: 京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预 计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米? 解: 22.(本小题满分4分)
已知等边三角形纸片ABC的边长为8,D为AB边上的点,过点D作DG∥BC交AC于点G.DEBC于点E,过点G作GFBC于点F,把三角形纸片ABC分别沿DG,DE,GF按图1所示方式折叠,点A,B,C分别落在点A,B,C处.若点A,B,C在矩形DEFG内或其边上,且互不重合,此时我们称△ABC(即图中阴影部分)为“重叠三角形”.
A A
D G D G
A A C B E CB F C 图1 B E C B F
图2
(1)若把三角形纸片ABC放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点A,B,C,D恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠三角形ABC的面积; (2)实验探究:设AD的长为m,若重叠三角形ABC存在.试用含m的代数式表示重叠三角形ABC的面积,并写出m的取值范围(直接写出结果,备用图供实验,探究使用).
5 / 17
A A
C C B B
备用图 备用图
解:(1)重叠三角形ABC的面积为 ;
(2)用含m的代数式表示重叠三角形ABC的面积为 ;m的取值范围为 .
七、解答题(本题满分7分)
23.已知:关于x的一元二次方程mx2(3m2)x2m20(m0). (1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1x2).若y是关于m的函数,且yx22x1,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m. (1)证明:
(2)解:
(3)解:
y 4 3 2 1 -4 -3 -2 -1 O 1 2 3 4 -1 -2 -3 -4 x 6 / 17
八、解答题(本题满分7分)
24.在平面直角坐标系xOy中,抛物线yx2bxc与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线
y 4 3 2 1 1 2 3 4 x
ykx沿y轴向上平移3个单位长度后恰好经过B,C两点.
(1)求直线BC及抛物线的解析式;
-2 -1 O (2)设抛物线的顶点为D,点P在抛物线的对称轴上,且APDACB,求点P的坐标; (3)连结CD,求OCA与OCD两角和的度数. 解:(1)
(2)
(3)
7 / 17
-1 -2 九、解答题(本题满分8分) 25.请阅读下列材料:
问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连结PG,PC.若ABCBEF60,探究PG与PC的位置关系及
PG的值. PC小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.
C D C D
P G F P
G F
B A E A B
图1 图2 E
请你参考小聪同学的思路,探究并解决下列问题:
PG的值; PC(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB(1)写出上面问题中线段PG与PC的位置关系及
在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.
(3)若图1中ABCBEF2(090),将菱形BEFG绕点B顺时针旋转任意角度,原问题
PG的值(用含的式子表示). PCPG . 解:(1)线段PG与PC的位置关系是 ;PC中的其他条件不变,请你直接写出(2)
8 / 17
2008年北京市高级中等学校招生考试
数学试卷答案及评分参考
阅卷须知:
1.一律用红钢笔或红圆珠笔批阅,按要求签名. 2.第Ⅰ卷是选择题,机读阅卷.
3.第Ⅱ卷包括填空题和解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
第Ⅰ卷 (机读卷 共32分)
一、选择题(共8道小题,每小题4分,共32分) 题号 答案
1 A 2 D 3 C 4 C 5 B 6 B 7 B 8 D 第Ⅱ卷 (非机读卷 共88分)
二、填空题(共4道小题,每小题4分,共16分) 题号 答案 9 10 11 4 12 1x 2a(ab)(ab) b207 ab3n1(1) nan三、解答题(共5道小题,共25分) 13.(本小题满分5分)
1解:82sin45(2π)
3012222·················································································· 4分 13 ·
222. ·································································································· 5分
14.(本小题满分5分)
解:去括号,得5x12≤8x6. ··································································· 1分 移项,得5x8x≤612. ·········································································· 2分 合并,得3x≤6. ······················································································· 3分 系数化为1,得x≥2. ················································································ 4分 不等式的解集在数轴上表示如下: 3 2 1 0 1 2 3 ·················································································································· 5分 15.(本小题满分5分) 证明:AB∥ED,
9 / 17
BE. ······························································································ 2分 在△ABC和△CED中,
ABCE, BE,BCED,△ABC≌△CED. ··················································································· 4分 ACCD. ······························································································ 5分
16.(本小题满分5分)
解:由图象可知,点M(2,············································ 1分 1)在直线ykx3上, ·
2k31. 解得k2. ······························································································· 2分
····································································· 3分 直线的解析式为y2x3. ·令y0,可得x3. 23······························································ 4分 0. ·直线与x轴的交点坐标为,2令x0,可得y3.
······························································· 5分 3). ·直线与y轴的交点坐标为(0,17.(本小题满分5分) 解:
2xy(xy) 22x2xyy2xy(xy) ························································································· 2分 2(xy)2xy. ·································································································· 3分 xy当x3y0时,x3y.·············································································· 4分
原式6yy7y7. ·············································································· 5分
3yy2y2四、解答题(共2道小题,共10分) 18.(本小题满分5分)
解法一:如图1,分别过点A,D作AEBC于点E, DFBC于点F. ······································ 1分 AE∥DF.
B 10 / 17
A D
E F 图1
C
又AD∥BC,
四边形AEFD是矩形.
···································· 2分 EFAD2. ·
ABAC,B45,BC42, ABAC.
1AEECBC22.
2DFAE22,
···················································································· 4分 CFECEF2 ·在Rt△DFC中,DFC90,
DCDF2CF2(22)2(2)210. ············································ 5分
解法二:如图2,过点D作DF∥AB,分别交AC,BC于点E,F. ···················· 1分
ABAC,
AEDBAC90. AD∥BC,
A E B F
图2
D
DAE180BBAC45.
在Rt△ABC中,BAC90,B45,BC42,
C
ACBCsin45422································································· 2分 4 2在Rt△ADE中,AED90,DAE45,AD2,
DEAE1.
CEACAE3. ·················································································· 4分
在Rt△DEC中,CED90,
························································ 5分 DCDE2CE2123210. ·
19. (本小题满分5分) 解:(1)直线BD与O相切. ········································································ 1分 证明:如图1,连结OD. OAOD, AADO.
C D A
11 / 17
E 图1 B
C90, CBDCDB90.
O 又
CBDA,
ADOCDB90. ODB90.
················································································ 2分 直线BD与O相切. ·(2)解法一:如图1,连结DE.
AE是O的直径, ADE90.
AD:AO8:5,
AD4cosA. ····················································································· 3分
AE5C90,CBDA,
BC4. ·············································································· 4分 BD55BC2, BD. ····································································· 5分
21解法二:如图2,过点O作OHAD于点H. AHDHAD.
2C AD:AO8:5,
AH4cosA. ···················· 3分 D AO5cosCBDH C90,CBDA, cosCBDBC4. ································· 4分 BD5A
O 图2 B
BC2,
5BD. ································································································· 5分
2五、解答题(本题满分6分) 解:(1)补全图1见下图. ·············································································· 1分 “限塑令”实施前,平均一次购物使 用不同数量塑料购物袋的人数统计图 .. 人数/位
40 37 35 30 26
25 20 15 11 10 9 10 4 3 5
0 1 2 3 4 5 6 7 塑料袋数/个
图1
12 / 17
9137226311410546373003(个).
100100这100位顾客平均一次购物使用塑料购物袋的平均数为3个. ································ 3分
200036000.
估计这个超市每天需要为顾客提供6000个塑料购物袋. ········································ 4分 (2)图2中,使用收费塑料购物袋的人数所占百分比为25%. ······························· 5分
根据图表回答正确给1分,例如:由图2和统计表可知,购物时应尽量使用自备袋和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购物袋的使用量,为环保做贡献. 6分
六、解答题(共2道小题,共9分)
21.解:设这次试车时,由北京到天津的平均速度是每小时x千米,则由天津返回北京的平均速度是每小时(x40)千米. ·························································································· 1分
3061x(x40). ··································································· 3分 602解得x200. ····························································································· 4分
依题意,得
答:这次试车时,由北京到天津的平均速度是每小时200千米. ····························· 5分 22.解:(1)重叠三角形ABC的面积为3. ·················································· 1分 (2)用含m的代数式表示重叠三角形ABC的面积为3(4m)2; ······················ 2分
m的取值范围为
8≤m4. ·········································································· 4分 3七、解答题(本题满分7分) 23.(1)证明:
mx2(3m2)x2m20是关于x的一元二次方程,
[(3m2)]24m(2m2)m24m4(m2)2.
2当m0时,(m2)0,即0.
······································································· 2分 方程有两个不相等的实数根. ·
(3m2)(m2)(2)解:由求根公式,得x.
2m2m2x或x1. ·················································································· 3分
mm0,
2m22(m1)1.
mmx1x2, x11,x22m2. ················································································ 4分 m2m22y yx22x121. mm4 3 2 1 y2m(m0)
13 / 17
2(m0) mx -4 -3 -2 -1 O 1 2 3 4 -1 -2 y即y2(m0)为所求. ························ 5分 m(3)解:在同一平面直角坐标系中分别画出
y2(m0)与y2m(m0)的图象. m ····························································· 6分 由图象可得,当m≥1时,y≤2m. ··········· 7分 八、解答题(本题满分7分) 24.解:(1)
ykx沿y轴向上平移3个单位长度后经过y轴上的点C,
C(0,3).
设直线BC的解析式为ykx3.
B(3,0)在直线BC上, 3k30. 解得k1.
································································· 1分 直线BC的解析式为yx3. ·抛物线yx2bxc过点B,C,
93bc0, c3.b4,解得
c3.······························································ 2分 抛物线的解析式为yx24x3. ·(2)由yx4x3.
2y 4 3 C 2 1 -2 -1 O -1 -2 A P E B 1 2 F 3 4 D P 图1
x
1),A(1,0). 可得D(2,OB3,OC3,OA1,AB2.
可得△OBC是等腰直角三角形.
OBC45,CB32.
如图1,设抛物线对称轴与x轴交于点F,
1AB1. 2过点A作AEBC于点E. AFAEB90.
14 / 17
可得BEAE2,CE22.
在△AEC与△AFP中,AECAFP90,ACEAPF,
△AEC∽△AFP.
AECE222,. AFPF1PF解得PF2.
点P在抛物线的对称轴上,
··································································· 5分 2)或(2,2). ·点P的坐标为(2,,0)关于y轴的对称点A,则A(1,(3)解法一:如图2,作点A(10).
连结AC,AD,
可得ACAC10,OCAOCA. 由勾股定理可得CD20,AD10. 又AC10,
222y 4 3 C 2 1 A A B -1 O 1 2 F 3 4 -1 D -2 图2
x
AD2AC2CD2.
△ADC是等腰直角三角形,CAD90,
DCA45.
OCAOCD45. OCAOCD45.
即OCA与OCD两角和的度数为45. ························································· 7分 y 解法二:如图3,连结BD.
4 同解法一可得CD20,AC10. 3 C 2 在Rt△DBF中,DFB90,BFDF1,
1 -2 -1 O -1 -2 A B 1 2 F 3 4 D 图3
x
DBDF2BF22.
在△CBD和△COA中,
DB2BC32CD202,2,2. AO1OC3CA1015 / 17
DBBCCD. AOOCCA△CBD∽△COA. BCDOCA.
OCB45,
OCAOCD45.
即OCA与OCD两角和的度数为45. ························································· 7分 九、解答题(本题满分8分)
25.解:(1)线段PG与PC的位置关系是PGPC;
PGPC································································································ 2分 3. ·
(2)猜想:(1)中的结论没有发生变化.
证明:如图,延长GP交AD于点H,连结CH,CG. P是线段DF的中点, FPDP.
由题意可知AD∥FG. GFPHDP.
GPFHPD, △GFP≌△HDP.
GPHP,GFHD. 四边形ABCD是菱形,
D H
A
P
C
G
B
E
F
CDCB,HDCABC60.
由ABCBEF60,且菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上, 可得GBC60.
HDCGBC. 四边形BEFG是菱形, GFGB. HDGB.
△HDC≌△GBC.
CHCG,DCHBCG.
DCHHCBBCGHCB120.
即HCG120.
CHCG,PHPG,
PGPC,GCPHCP60.
16 / 17
PG3. ······························································································ 6分 PCPGtan(90). ·(3)············································································ 8分 PC
17 / 17
因篇幅问题不能全部显示,请点此查看更多更全内容