热门搜索 :
考研考公
您的当前位置:首页正文

2008年北京市中考数学试题及答案(word版)

来源:伴沃教育
2008年北京市高级中等学校招生考试

数 学 试 卷

一、选择题(共8道小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字..母处涂黑.

1.6的绝对值等于( ) A.6

B.

1 6C.1 6D.6

2.截止到2008年5月19日,已有21 600名中外记者成为北京奥运会的注册记者,创历届奥运会之最.将21 600用科学记数法表示应为( ) A.0.21610

5B.21.610

3

C.2.1610

3

D.2.1610

43.若两圆的半径分别是1cm和5cm,圆心距为6cm,则这两圆的位置关系是( ) A.内切 B.相交 C.外切 D.外离

4.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是( ) A.50,20 B.50,30 C.50,50 D.135,50 5.若一个多边形的内角和等于720,则这个多边形的边数是( )

A.5 B.6 C.7 D.8

6.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是( )

A.

1 5B.

2 5C.

1 2D.

3 5

7.若x2y30,则xy的值为( )

A.8 B.6 C.5 D.6

8.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如右图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( ) O

O O O O

P P P P P M M M M M M M M M D. B. A. C.

1 / 17

二、填空题(共4道小题,每小题4分,共16分) 9.在函数y1中,自变量x的取值范围是 . 2x132A D B

E C

10.分解因式:aab .

11.如图,在△ABC中,D,E分别是AB,AC的中点, 若DE2cm,则BC cm.

b2b5b8b1112.一组按规律排列的式子:,3,3,4,…(ab0),其中第7个式子是 ,第n个

aaaa式子是 (n为正整数).

三、解答题(共5道小题,共25分) 13.(本小题满分5分)

1计算:82sin45(2).

301 14.(本小题满分5分)

解不等式5x12≤2(4x3),并把它的解集在数轴上表示出来. 15.(本小题满分5分)

已知:如图,C为BE上一点,点A,D分别在BE两侧.AB∥ED,

B

ABCE,BCED. 求证:ACCD. 证明:

3 2 1 0 1 2 3 A C E

D

2 / 17

16.(本小题满分5分)

如图,已知直线ykx3经过点M,求此直线与x轴,y轴的交点坐标. ykx3 y 解: 17.(本小题满分5分) 已知x3y0,求

2xyx22xyy2(xy)的值. 解:

四、解答题(共2道小题,共10分) 18.(本小题满分5分)

如图,在梯形ABCD中,AD∥BC,ABAC,B45,BC42,求DC的长.

解:

3 / 17

M 1 2 O 1 x A D AD2,B C 19.(本小题满分5分)

已知:如图,在Rt△ABC中,C90,点O在AB上,以O为圆心,OA长为半径的D 圆与AC,AB分别交于点D,E,且CBDA. (1)判断直线BD与O的位置关系,并证明你的结论;

A B

E (2)若AD:AO8:5,BC2,求BD的长. O 解:(1)

(2)

五、解答题(本题满分6分)

20.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:

“限塑令”实施后,使用各种

“限塑令”实施前,平均一次购物使购物袋的人数分布统计图 用不同数量塑料购物袋的人数统计图 ..其它 人数/位 5% 收费塑料购物袋 _______% 40 37 35 30 押金式环保袋 26 25 24% 20 15 11 9 10 4 3 5 自备袋 0 “限塑令”实施后,塑料购物袋使用后的处理方式统计表 1 2 3 4 5 6 7 塑料袋数/个 46% 图2 处理方式 图1 直接丢弃 直接做垃圾袋 再次购物使用其它 选该项的人数占 5% 35% 49% 11% 总人数的百分比 请你根据以上信息解答下列问题: (1)补全图1,“限塑令”实施前,如果每天约有2 000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?

C 4 / 17

(2)补全图2,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对...........环境保护带来积极的影响. 解:(1)

(2)

六、解答题(共2道小题,共9分) 21.(本小题满分5分)列方程或方程组解应用题: 京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预 计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米? 解: 22.(本小题满分4分)

已知等边三角形纸片ABC的边长为8,D为AB边上的点,过点D作DG∥BC交AC于点G.DEBC于点E,过点G作GFBC于点F,把三角形纸片ABC分别沿DG,DE,GF按图1所示方式折叠,点A,B,C分别落在点A,B,C处.若点A,B,C在矩形DEFG内或其边上,且互不重合,此时我们称△ABC(即图中阴影部分)为“重叠三角形”.

A A

D G D G

A A C B E CB F C 图1 B E C B F

图2

(1)若把三角形纸片ABC放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点A,B,C,D恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠三角形ABC的面积; (2)实验探究:设AD的长为m,若重叠三角形ABC存在.试用含m的代数式表示重叠三角形ABC的面积,并写出m的取值范围(直接写出结果,备用图供实验,探究使用).

5 / 17

A A

C C B B

备用图 备用图

解:(1)重叠三角形ABC的面积为 ;

(2)用含m的代数式表示重叠三角形ABC的面积为 ;m的取值范围为 .

七、解答题(本题满分7分)

23.已知:关于x的一元二次方程mx2(3m2)x2m20(m0). (1)求证:方程有两个不相等的实数根;

(2)设方程的两个实数根分别为x1,x2(其中x1x2).若y是关于m的函数,且yx22x1,求这个函数的解析式;

(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m. (1)证明:

(2)解:

(3)解:

y 4 3 2 1 -4 -3 -2 -1 O 1 2 3 4 -1 -2 -3 -4 x 6 / 17

八、解答题(本题满分7分)

24.在平面直角坐标系xOy中,抛物线yx2bxc与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线

y 4 3 2 1 1 2 3 4 x

ykx沿y轴向上平移3个单位长度后恰好经过B,C两点.

(1)求直线BC及抛物线的解析式;

-2 -1 O (2)设抛物线的顶点为D,点P在抛物线的对称轴上,且APDACB,求点P的坐标; (3)连结CD,求OCA与OCD两角和的度数. 解:(1)

(2)

(3)

7 / 17

-1 -2 九、解答题(本题满分8分) 25.请阅读下列材料:

问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连结PG,PC.若ABCBEF60,探究PG与PC的位置关系及

PG的值. PC小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.

C D C D

P G F P

G F

B A E A B

图1 图2 E

请你参考小聪同学的思路,探究并解决下列问题:

PG的值; PC(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB(1)写出上面问题中线段PG与PC的位置关系及

在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.

(3)若图1中ABCBEF2(090),将菱形BEFG绕点B顺时针旋转任意角度,原问题

PG的值(用含的式子表示). PCPG . 解:(1)线段PG与PC的位置关系是 ;PC中的其他条件不变,请你直接写出(2)

8 / 17

2008年北京市高级中等学校招生考试

数学试卷答案及评分参考

阅卷须知:

1.一律用红钢笔或红圆珠笔批阅,按要求签名. 2.第Ⅰ卷是选择题,机读阅卷.

3.第Ⅱ卷包括填空题和解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.

第Ⅰ卷 (机读卷 共32分)

一、选择题(共8道小题,每小题4分,共32分) 题号 答案

1 A 2 D 3 C 4 C 5 B 6 B 7 B 8 D 第Ⅱ卷 (非机读卷 共88分)

二、填空题(共4道小题,每小题4分,共16分) 题号 答案 9 10 11 4 12 1x 2a(ab)(ab) b207 ab3n1(1) nan三、解答题(共5道小题,共25分) 13.(本小题满分5分)

1解:82sin45(2π)

3012222·················································································· 4分 13 ·

222. ·································································································· 5分

14.(本小题满分5分)

解:去括号,得5x12≤8x6. ··································································· 1分 移项,得5x8x≤612. ·········································································· 2分 合并,得3x≤6. ······················································································· 3分 系数化为1,得x≥2. ················································································ 4分 不等式的解集在数轴上表示如下: 3 2 1 0 1 2 3 ·················································································································· 5分 15.(本小题满分5分) 证明:AB∥ED,

9 / 17

BE. ······························································································ 2分 在△ABC和△CED中,

ABCE, BE,BCED,△ABC≌△CED. ··················································································· 4分 ACCD. ······························································································ 5分

16.(本小题满分5分)

解:由图象可知,点M(2,············································ 1分 1)在直线ykx3上, ·

2k31. 解得k2. ······························································································· 2分

····································································· 3分 直线的解析式为y2x3. ·令y0,可得x3. 23······························································ 4分 0. ·直线与x轴的交点坐标为,2令x0,可得y3.

······························································· 5分 3). ·直线与y轴的交点坐标为(0,17.(本小题满分5分) 解:

2xy(xy) 22x2xyy2xy(xy) ························································································· 2分 2(xy)2xy. ·································································································· 3分 xy当x3y0时,x3y.·············································································· 4分

原式6yy7y7. ·············································································· 5分

3yy2y2四、解答题(共2道小题,共10分) 18.(本小题满分5分)

解法一:如图1,分别过点A,D作AEBC于点E, DFBC于点F. ······································ 1分 AE∥DF.

B 10 / 17

A D

E F 图1

C

又AD∥BC,

四边形AEFD是矩形.

···································· 2分 EFAD2. ·

ABAC,B45,BC42, ABAC.

1AEECBC22.

2DFAE22,

···················································································· 4分 CFECEF2 ·在Rt△DFC中,DFC90,

DCDF2CF2(22)2(2)210. ············································ 5分

解法二:如图2,过点D作DF∥AB,分别交AC,BC于点E,F. ···················· 1分

ABAC,

AEDBAC90. AD∥BC,

A E B F

图2

D

DAE180BBAC45.

在Rt△ABC中,BAC90,B45,BC42,

C

ACBCsin45422································································· 2分 4 2在Rt△ADE中,AED90,DAE45,AD2,

DEAE1.

CEACAE3. ·················································································· 4分

在Rt△DEC中,CED90,

························································ 5分 DCDE2CE2123210. ·

19. (本小题满分5分) 解:(1)直线BD与O相切. ········································································ 1分 证明:如图1,连结OD. OAOD, AADO.

C D A

11 / 17

E 图1 B

C90, CBDCDB90.

O 又

CBDA,

ADOCDB90. ODB90.

················································································ 2分 直线BD与O相切. ·(2)解法一:如图1,连结DE.

AE是O的直径, ADE90.

AD:AO8:5,

AD4cosA. ····················································································· 3分

AE5C90,CBDA,

BC4. ·············································································· 4分 BD55BC2, BD. ····································································· 5分

21解法二:如图2,过点O作OHAD于点H. AHDHAD.

2C AD:AO8:5,

AH4cosA. ···················· 3分 D AO5cosCBDH C90,CBDA, cosCBDBC4. ································· 4分 BD5A

O 图2 B

BC2,

5BD. ································································································· 5分

2五、解答题(本题满分6分) 解:(1)补全图1见下图. ·············································································· 1分 “限塑令”实施前,平均一次购物使 用不同数量塑料购物袋的人数统计图 .. 人数/位

40 37 35 30 26

25 20 15 11 10 9 10 4 3 5

0 1 2 3 4 5 6 7 塑料袋数/个

图1

12 / 17

9137226311410546373003(个).

100100这100位顾客平均一次购物使用塑料购物袋的平均数为3个. ································ 3分

200036000.

估计这个超市每天需要为顾客提供6000个塑料购物袋. ········································ 4分 (2)图2中,使用收费塑料购物袋的人数所占百分比为25%. ······························· 5分

根据图表回答正确给1分,例如:由图2和统计表可知,购物时应尽量使用自备袋和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购物袋的使用量,为环保做贡献. 6分

六、解答题(共2道小题,共9分)

21.解:设这次试车时,由北京到天津的平均速度是每小时x千米,则由天津返回北京的平均速度是每小时(x40)千米. ·························································································· 1分

3061x(x40). ··································································· 3分 602解得x200. ····························································································· 4分

依题意,得

答:这次试车时,由北京到天津的平均速度是每小时200千米. ····························· 5分 22.解:(1)重叠三角形ABC的面积为3. ·················································· 1分 (2)用含m的代数式表示重叠三角形ABC的面积为3(4m)2; ······················ 2分

m的取值范围为

8≤m4. ·········································································· 4分 3七、解答题(本题满分7分) 23.(1)证明:

mx2(3m2)x2m20是关于x的一元二次方程,

[(3m2)]24m(2m2)m24m4(m2)2.

2当m0时,(m2)0,即0.

······································································· 2分 方程有两个不相等的实数根. ·

(3m2)(m2)(2)解:由求根公式,得x.

2m2m2x或x1. ·················································································· 3分

mm0,

2m22(m1)1.

mmx1x2, x11,x22m2. ················································································ 4分 m2m22y yx22x121. mm4 3 2 1 y2m(m0)

13 / 17

2(m0) mx -4 -3 -2 -1 O 1 2 3 4 -1 -2 y即y2(m0)为所求. ························ 5分 m(3)解:在同一平面直角坐标系中分别画出

y2(m0)与y2m(m0)的图象. m ····························································· 6分 由图象可得,当m≥1时,y≤2m. ··········· 7分 八、解答题(本题满分7分) 24.解:(1)

ykx沿y轴向上平移3个单位长度后经过y轴上的点C,

C(0,3).

设直线BC的解析式为ykx3.

B(3,0)在直线BC上, 3k30. 解得k1.

································································· 1分 直线BC的解析式为yx3. ·抛物线yx2bxc过点B,C,

93bc0, c3.b4,解得

c3.······························································ 2分 抛物线的解析式为yx24x3. ·(2)由yx4x3.

2y 4 3 C 2 1 -2 -1 O -1 -2 A P E B 1 2 F 3 4 D P 图1

x

1),A(1,0). 可得D(2,OB3,OC3,OA1,AB2.

可得△OBC是等腰直角三角形.

OBC45,CB32.

如图1,设抛物线对称轴与x轴交于点F,

1AB1. 2过点A作AEBC于点E. AFAEB90.

14 / 17

可得BEAE2,CE22.

在△AEC与△AFP中,AECAFP90,ACEAPF,

△AEC∽△AFP.

AECE222,. AFPF1PF解得PF2.

点P在抛物线的对称轴上,

··································································· 5分 2)或(2,2). ·点P的坐标为(2,,0)关于y轴的对称点A,则A(1,(3)解法一:如图2,作点A(10).

连结AC,AD,

可得ACAC10,OCAOCA. 由勾股定理可得CD20,AD10. 又AC10,

222y 4 3 C 2 1 A A B -1 O 1 2 F 3 4 -1 D -2 图2

x

AD2AC2CD2.

△ADC是等腰直角三角形,CAD90,

DCA45.

OCAOCD45. OCAOCD45.

即OCA与OCD两角和的度数为45. ························································· 7分 y 解法二:如图3,连结BD.

4 同解法一可得CD20,AC10. 3 C 2 在Rt△DBF中,DFB90,BFDF1,

1 -2 -1 O -1 -2 A B 1 2 F 3 4 D 图3

x

DBDF2BF22.

在△CBD和△COA中,

DB2BC32CD202,2,2. AO1OC3CA1015 / 17

DBBCCD. AOOCCA△CBD∽△COA. BCDOCA.

OCB45,

OCAOCD45.

即OCA与OCD两角和的度数为45. ························································· 7分 九、解答题(本题满分8分)

25.解:(1)线段PG与PC的位置关系是PGPC;

PGPC································································································ 2分 3. ·

(2)猜想:(1)中的结论没有发生变化.

证明:如图,延长GP交AD于点H,连结CH,CG. P是线段DF的中点, FPDP.

由题意可知AD∥FG. GFPHDP.

GPFHPD, △GFP≌△HDP.

GPHP,GFHD. 四边形ABCD是菱形,

D H

A

P

C

G

B

E

F

CDCB,HDCABC60.

由ABCBEF60,且菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上, 可得GBC60.

HDCGBC. 四边形BEFG是菱形, GFGB. HDGB.

△HDC≌△GBC.

CHCG,DCHBCG.

DCHHCBBCGHCB120.

即HCG120.

CHCG,PHPG,

PGPC,GCPHCP60.

16 / 17

PG3. ······························································································ 6分 PCPGtan(90). ·(3)············································································ 8分 PC

17 / 17

因篇幅问题不能全部显示,请点此查看更多更全内容

Top