J.NeuralEng.4(2007)264–275
JOURNALOFNEURALENGINEERING
doi:10.1088/1741-2560/4/3/012
Decodingtwo-dimensionalmovementtrajectoriesusingelectrocorticographicsignalsinhumans
GSchalk1,2,JKub´anek1,3,KJMiller4,5,NRAnderson6,ECLeuthardt7,8,JGOjemann7,DLimbrick8,DMoran6,LAGerhardt2andJRWolpaw1
12
BCIR&DProgr,WadsworthCtr,NYSDepartmentofHealth,Albany,NY,USAElec,Comp,andSystEngDepartment,RenssPolytInst,Troy,NY,USA3
DepartmentofCybern,CzechTechUniversity,Prague,CzechRepublic4
DepartmentofPhysics,UniversityofWashington,Seattle,WA,USA5
DepartmentofMedicine,UniversityofWashington,Seattle,WA,USA6
DepartmentofBiomedEng,WashingtonUniversity,St.Louis,MO,USA7
DepartmentofNeurosurgery,UniversityofWashSchoolofMed,Seattle,WA,USA8
DepartmentofNeurolSurg,Barnes-JewishHospital,St.Louis,MO,USAE-mail:schalk@wadsworth.org
Received27September2006
Acceptedforpublication30May2007Published22June2007
Onlineatstacks.iop.org/JNE/4/264
Abstract
Signalsfromthebraincouldprovideanon-muscularcommunicationandcontrolsystem,abrain–computerinterface(BCI),forpeoplewhoareseverelyparalyzed.AcommonBCI
researchstrategybeginsbydecodingkinematicparametersfrombrainsignalsrecordedduringactualarmmovement.Ithasbeenassumedthattheseparameterscanbederivedaccuratelyonlyfromsignalsrecordedbyintracorticalmicroelectrodes,butthelong-termstabilityofsuchelectrodesisuncertain.Thepresentstudydisprovesthiswidespreadassumptionbyshowinginhumansthatkinematicparameterscanalsobedecodedfromsignalsrecordedbysubduralelectrodesonthecorticalsurface(ECoG)withanaccuracycomparabletothatachievedinmonkeystudiesusingintracorticalmicroelectrodes.AnewECoGfeaturelabeledthelocalmotorpotential(LMP)providedthemostinformationaboutmovement.Furthermore,featuresdisplayedcosinetuningthathaspreviouslybeendescribedonlyforsignalsrecordedwithinthebrain.TheseresultssuggestthatECoGcouldbeamorestableandlessinvasivealternativetointracorticalelectrodesforBCIsystems,andcouldalsoproveusefulinstudiesofmotorfunction.
MThisarticlefeaturesonlinemultimediaenhancements
(Somefiguresinthisarticleareincolouronlyintheelectronicversion)
1.Introduction
Brain–computerinterfaces(BCIs)usebrainsignalstocommunicateauser’sintent[1].Becausethesesystemsdonotdependonperipheralnervesandmuscles,theycanbeusedbypeoplewithseveremotordisabilities.PracticalapplicationsofBCItechnologyarecurrentlyimpededbythelimitationsandrequirementsofnon-invasiveandinvasivemethods.
1741-2560/07/030264+12$30.00
Non-invasiveBCIsuseelectroencephalographicactivity(EEG)recordedfromthescalp[1].Whilenon-invasiveBCIscansupportmultidimensionalcontrol[2],theiruserequiresextensiveusertraining.InvasiveBCIsuseactivityfrommultipleneuronsrecordedwithinthebrain[3–6].SignalsrecordedwithincortexhavehigherfidelityandmightsupportBCIsystemsthatrequirelesstrainingthanEEG-basedsystems.However,clinicalimplementationsareimpeded
264
©2007IOPPublishingLtdPrintedintheUK
Decodingtwo-dimensionalmovementtrajectoriesusingelectrocorticographicsignalsinhumans
Figure1.Electrodelocationsinthefivesubjects.TheelectrodeswereprojectedontherighthemisphereforsubjectsAandE(see
asterisks).ThebraintemplateonthebottomrighthighlightsthelocationofthecentralsulcusandSylvianfissure,andalsooutlinesrelevantBrodmannareas.
Table1.Clinicalprofiles.Allsubjectswereliterateandfunctionallyindependent.SubjectAhadapriorleftanteriortemporallobectomy.SubjectBhadnotraumaticorstructurallesion.SubjectChadarightanteriorfrontaltraumaticinjury.SubjectDhadarightposteriortemporalarteriovenousmalformationembolized20yearsearlier.SubjectEhadaleftfrontaldysembryoplasticneuroepithelialtumor.
SubjectABCDE
Age2324384818
SexMFMMF
HandRRRRR
CognitivecapacityNormal(IQ88)Normal(IQ97)Borderline(IQ70)
Normal(IQ82;Rightsupquadrvisualdeficit)Normal(IQ86)
GridlocationLeftfrontaltemporalRightfrontaltemporalRightfrontalRighttemporalLeftfrontal
Seizurefocus
Lefttemporal
RightorbitofrontalandtemporalRightfrontal
RighttemporaloccipitalfocusLeftfrontal
mainlybytherisksofsurgicalimplantationandbythesubstantialproblemsinachievingandmaintainingstablelong-termrecordings[7,8].Whileafewrecentstudieshavebeguntoapplynon-invasiveandinvasiveBCItechnologiestotheneedsofseverelydisabledindividuals[9,10],theseissuesremaincrucialobstaclesthatcurrentlyprohibitwidespreadclinicaluseinhumans.
Inthecurrentabsenceoftechniquestoextracthigh-fidelitysignalsfromEEGandofmethodstorecordactivityfromwithinthebrainsafelyandoverlongperiods,theuseofelectrocorticographicactivity(ECoG)recordedfromthecorticalsurfacecouldbeapowerfulandpracticalalternative.ECoGhashigherspatialresolutionthanEEG(i.e.,tenthsofmillimetersversuscentimeters),broaderbandwidth(i.e.,0–500Hz[11]versus0–40Hz),higheramplitude(i.e.,50–100µVmaximumversus10–20µV),andfarlessvulnerabilitytoartifactssuchasEMG[12].Atthesametime,becauseECoGdoesnotrequireelectrodesthatpenetratecortex,itislikelytohavegreaterlong-termstability[13–17]andtoproducelesstissuedamage.
WepreviouslyshowedthatECoGsignalsassociatedwithimageryofarbitrarytaskscanprovideone-dimensionalBCIcontrolwithlittletraining[18].Itispossiblethatusingmoreintuitivetasks(suchasimaginedhandmovements)mightmoreefficientlyextendthiscontroltomultipledimensions.However,moststudiesthatdecodedhandmovementsfrombrainsignalshavebeeninmonkeys[19–21].Onlylimitedrelevantinformationisavailableinhumans[18,22,23].
Inthisstudy,wesetouttodetermineifitispossibletofaithfullydecodeinrealtimekinematicparametersfromECoGsignalsrecordedinhumans.Westudiedfivesubjectswhowereaskedtouseajoysticktomoveacursorsoas
totrackatargetthatmovedonacomputerscreen.TheprincipalresultsshowthatECoGsignalscanbeusedtoaccuratelydecodetwo-dimensionaljoystickkinematicsinhumans.Theyalsoshowthattheseresultsarewithintherangeofthoseachievedinstudiesusingintracorticalmicroelectroderecordingsinmonkeysthatalsoaimedtodecodetwo-dimensionalkinematicparameters.Furthermore,theyindicatethatanewbrainsignalcomponent,whichwelabelthelocalmotorpotential(LMP),holdssubstantialinformationaboutmovementdirection.Finally,ECoGfeaturescanalsoexhibitthesamekindofcosinetuningpreviouslydetectedonlywithintracorticalmicroelectrodesinmonkeys[21,24–32].TheseresultsprovidestrongevidencethatECoGcouldbeusedtoprovideaccuratemultidimensionalBCIcontrol,andalsosuggestthatECoGisapotentiallypowerfultoolforthestudyofbrainfunction.
2.Methods
2.1.Subjects
Thesubjectsinthisstudywerefivepatientswithintractableepilepsywhounderwenttemporaryplacementofsubduralelectrodearraystolocalizeseizurefocipriortosurgicalresection.Theyincludedthreemen(subjectsA,CandD)andtwowomen(subjectsBandE).(Seetable1foradditionalinformation.)Allgaveinformedconsent.ThestudywasapprovedbytheInstitutionalReviewBoardoftheUniversityofWashingtonSchoolofMedicine.Eachsubjecthada48-or64-electrodegridplacedoverthefronto-parietal-temporalregionincludingpartsofsensorimotorcortex(seefigure1fordetails).Thesegridsconsistedofflatelectrodeswitha
265
GSchalketal
diameterof4mm(2.3mmexposed)andaninter-electrodedistanceof1cm,andwereimplantedforabout1week.GridplacementsanddurationofECoGmonitoringwerebasedsolelyontherequirementsoftheclinicalevaluation,withoutanyconsiderationofthisstudy.Followingplacementofthesubduralgrid,eachsubjecthadpostoperativeanterior–posteriorandlateralradiographstoverifygridlocation.2.2.Experimentalparadigm
Duringthestudy,eachsubjectwasinasemi-recumbentpositioninahospitalbedabout1mfromavideoscreen.He/sheusedajoystickwiththehandcontralateraltotheimplantedelectrodearraytomoveawhitecursorintwodimensionstotrackagreentarget.Thetargetmovedcounter-clockwiseinacirclethatwaspositionedinthecenterofacomputerscreen.Thetargetencouragedthesubjects,whowereoftenimpairedbypost-operativerecovery,toengageincontinuousmovements.Substantialvariabilityinthesubjects’trackingtrajectoriesallowedustomakeadditionalinferencesaboutdifferentaspectsofthemovement(seesection4fordetails).Thediameterofthecirclewas61%(onesubject)or85%(allotherfoursubjects)ofthescreen’sheight.Onefullrevolutionofthetargettook6.3sforallsubjects.(Atthesamemovementspeed,atypicalcenter-outtask(i.e.,movingacursorfromthecenterofthescreentotheperipheryofthescreen)wouldhavehadamovementdurationoflessthan1.2s.)Toallowforofflineanalyses,thepositionofthecursorandthetargetwerestoredalongwiththedigitizedECoGsignals.Joystickpositionwasmappedtocursorvelocityandthejoystickproducedsignificantforcefeedbacktothesubjectsothatthistaskapproachedtheisometricforcetasksusedin[33–35].Subjectswereaskedtouseshoulderandproximalarmmovementsratherthanwristmovements.Theywerealsoaskedtomaintainaconstantposture,butneitherbody,head,norhandwererestrainedinanyway.2.3.Datacollection
Inallexperiments,werecordedECoGfromtheelectrodegridusingthegeneral-purposeBCIsystemBCI2000[36]connectedtoaNeuroscanSynamps2system.SimultaneousclinicalmonitoringwasachievedusingaconnectorthatsplitthecablescomingfromthesubjectintoonesetthatwasconnectedtotheclinicalmonitoringsystemandanothersetthatwasconnectedtotheBCI2000/Neuroscansystem.Thus,atnotimewasclinicalcareorclinicaldatacollectioncompromised.Allelectrodeswerereferencedtoaninactiveelectrode.Thesignalswereamplified,bandpassfilteredbetween0.15and200Hz,digitizedat1000Hz,andstoredinBCI2000.Theamountofdataobtainedvariedfromsubjecttosubject,anddependedonthesubject’sphysicalstateandavailability.Thedurationofthedatasetsaveraged443s(range130–830s).EachdatasetwasvisuallyinspectedandallchannelsthatdidnotclearlycontainECoGactivity(e.g.,suchaschannelsthatcontainedflatsignalsornoiseduetobrokenconnections)wereremovedpriortoanalysis,whichleft48–64channelsforouranalyses.266
2.4.3Dcorticalmapping
Weusedlateralskullradiographstoidentifythestereotacticcoordinatesofeachgridelectrodewithsoftware[37]thatduplicatedthemanualproceduredescribedin[38].WedefinedcorticalareasusingTalairach’sCo-PlanarStereotaxicAtlasoftheHumanBrain[39]andaTalairachtransformation(http://ric.uthscsa.edu/projects/talairachdaemon.html).Weobtainedatemplate3Dcorticalbrainmodel(subject-specificbrainmodelswerenotavailable)fromsourcecodeprovidedontheAFNISUMAwebsite(http://afni.nimh.nih.gov/afni/suma).Finally,weprojectedeachsubject’selectrodelocationsonthis3DbrainmodelandgeneratedactivationmapsusingacustomMatlabprogram.
2.5.Featureextractionandselection
Wefirstre-referencedthesignalfromeachelectrodeusingacommonaveragereference(CAR)montage.Todothis,
weobtainedtheCAR-filtered
s
h=sh−1signalsHhatchannelhusing
Hq=1sq.Hwasthetotalnumberofchannelsandshwastheoriginalsignalsampleataparticulartime.
Foreach333mstimeperiod(overlappingby166ms),wethenconvertedthetime-seriesECoGdataintothefrequencydomainwithanautoregressivemodel[40]oforder50.Usingthismodel,wecalculatedspectralamplitudesbetween0and200Hzin1Hzbins.Weaveragedthesespectralamplitudesinparticularfrequencyranges(8–12Hz,18–24Hz,35–42Hz,42–70Hz,70–100Hz,100–140Hz,140–190Hz)inthemu,betaandgammafrequencybands,similartothoseusedin[21].Inaddition,visualinspectionidentifiedspecificchannelsinwhichECoGvoltagelevelappearedtocorrelatewithkinematicparameters.Itthusseemedthattheselocationswereamplitude-modulatedinthetime-domain(i.e.,exhibitingthelocalmotorpotential(LMP))ratherthaninalowbandinthefrequency-domain.
Figure2showsanexampleECoGtimecourseforsubjectC(A),thespatialdistributionofchannelsthatexhibittheLMP(B),andthemagnifiedtimecourseofchannel35,aswellastheXpositionofthecursorandmovingtarget(C).ThecorrelationoftheECoGtimecoursewiththemovementparametersisevidentandclearlyfocusedonselectchannelsoverhandsensorimotorcortex.Themagnificationshownin(C)demonstratesanexampleofgoodcorrelationbetweenECoGtimecourse(blacktrace)withtheXpositionofthecursor(thickdarkgreentrace).ItalsoillustratesanexampleofmodesttrackingperformanceindicatedbythepoorconcurrencebetweentheXpositionofthecursor(thickdarkgreentrace)andtheXpositionofthemovingtarget(thinlightgreentrace)between45and60s.
Toaccountforthepossibilityofmovement-relatedLMPmodulation,weaddedtothefrequency-basedfeatureslistedabovethe333msrunningaverageoftherawunrectifiedsignal.Thisyieldedeightfeaturesperchannel,i.e.,atotalmaximumof8×64=512features.Finally,weappliedarunningaveragefilter(boxcarwindow,lengthwas9samples(9×166ms=1494ms))toeachofthesefeatures.
Toreducethislargenumberoffeatures,weemployedthecorrelation-basedfeatureselector(CFS)thatisimplementedin
Decodingtwo-dimensionalmovementtrajectoriesusingelectrocorticographicsignalsinhumans
(A)
212223242526272829
(B)1
8
57
NORMALIZED AMPLITUDE3031323334353637383940XcrsXtrkYcrsYtrk
64
(C)
30
20
TIME (s)
4560
04060
Figure2.ExampleECoGtimecourseforsubjectC.(A)TimecourseofECoGsignalsforchannels21–40andfortheXpositionofthecursor(Xcrs),theXpositionofthetrackingtarget(Xtrk),aswellastheYpositionofthecursor(Ycrs)andtarget(Ytrk).ChannelsthatexhibitatimecoursethatiscorrelatedwiththemovementparametersXcrsorYcrs(i.e.,atimecourseexhibitingtheLMP)areindicatedwithsymbols.(B)Electrodelocationsincludingchannelnumbers.SymbolsindicatethelocationsofchannelsthatshowtheLMP.
(C)MagnificationofECoGtimecourseofchannel35from30to60s,aswellastheXpositionofthecursor(thickdarkgreentrace)andtheXpositionofthemovingtarget(thinlightgreentrace).
theJava-basedWekapackage[41],whichranksfeaturesubsetsratherthanindividualfeatures.(Ittherebytakesintoaccountnotonlythecorrelationofanyoneparticularfeaturewiththevaluestobedecoded,butalsothecross-correlationbetweenfeatures.)Theuseofthisprocedurereducedthenumberoffeaturesto5–20(10onaverage)forthedifferentdatasets.2.6.Classification
UsingtheECoGfeaturesselectedbytheCFSprocedure,wethenderivedonelinearmodelforeachofthefourkinematicparametersofthesubject’scursor(i.e.,horizontalposition,verticalposition,horizontalvelocity,verticalvelocity).WeusedtheECoGfeaturestodecodeeachofthefourkinematicparametersimmediatelyfollowingtheperiodrepresentingthesefeatures(i.e.,causalprediction)sothatthesameprocedurecouldbeusedinrealtime.2.7.Evaluation
Theperformanceofthelinearmodelswasevaluatedusing5-foldcross-validation,i.e.,eachdatasetwasdividedintofiveparts,thelinearmodelsweredeterminedfrom4/5thofthedataset(trainingset)andtested(i.e.,thecoefficientsofthelinearmodelderivedusingtheregressionwereapplied)ontheremaining1/5th(testset).Thisprocedurewasthenrepeatedfivetimes—eachtime,adifferent1/5thofthedataset
wasusedasthetestset.(Thefeatureselectionprocedurewasalwaysappliedtothetrainingsetonly.)
Weevaluatedtheperformanceofeachofthefivemodelsbycross-correlatingthedecodedkinematicparameterswiththeactualvaluesforpositionandvelocity.Thisresultedinacorrelationcoefficientrforeachdataset,cross-validationfold,andeachofthefourkinematicparameters.2.8.Directionaltuning
Inadditionalanalyses,wedeterminedtherelationshipbetweeneachECoGfeaturefandthedirection(i.e.,angle)ofmovement.Todothis,weassigned,foreachcross-validationfoldofeachdataset,thefeaturesamplesftothecorrespondingmovementdirection,whichwediscretizedin20equidistantbinsfrom−180to+180◦.Dependingonthelengthofthedatasetandthejoystickmovementpatterns,eachofthesebinscontainedavariableamountoffeaturesamples(19onaverage).The20binsiandthedistributionoffeaturesamplesfiwithineachbindefinedatuningcurveforeachfeature,location,cross-validationfoldandsubject.Wethendeterminedwhethertheseobservedtuningcurveswereafunctionofmovementdirection(i.e.,theyweretuned)oracosinefunctionofmovementdirection(i.e.,theywerecosinetuned),similartotheapproachin[21].Thisprocedureisdescribedinshortbelow.
267
GSchalketal
Todeterminewhetheracurvewastuned,wecalculatedtheprobabilitythateachtuningcurvedifferedfromrandomlygeneratedtuningcurves.Todothis,wefirstcalculatedatuningindexmeasureSNRthatrelatedthevarianceofallfeaturevaluesσ2(f)totheaveragevarianceofthefeaturevalues
12022
)
σ(f):SNR=1σ20(f.withineachbin20ii=1σ2(f)Then,weshuffledallfeaturevaluessuchthattheywere
assignedtorandomlychosenbins,calculatedthevalueofSNR,andrepeatedthisprocedure200times,whichresultedin200measuresofSNR.WemodeledthesemeasurementsusingaGaussiandistribution(i.e.,wecalculatedtheSNRmeanandstandarddeviation)1.WefinallydeterminedtheprobabilityptthatthevalueofSNRfortheobservedtuningcurvewasgeneratedbytheGaussianmodeldistributionofrandomlygeneratedSNRvalues.Atuningcurvewasconsideredtunedifptwassmallerthan0.001.
Foreachtuningcurvethatwasconsideredtuned,wealsodeterminedwhetheritwascosinetuned.Todothis,wecalculatedthemeanvaluefiofallfeatureswithineachbin,whichdefinedtheaverageobservedtuningcurve.Wethencalculatedthecorrelationcoefficientrbetweenthisaveragetuningcurveandacosinefunctionthatwasfitthroughtothiscurve.Similartoabove,wethendeterminedtheprobabilitypctthattheobservedtuningcurvewasgeneratedbyadistributionofrandomlygeneratedrvalues.Atuningcurvewasconsideredcosinetunedifpctwassmallerthan0.001.
20i=1
i
Table2.Decodingofkinematicparameters.Correlationcoefficients(r)betweentheactualanddecodedkinematic
parameters(horizontalpositionofthecursor(X),verticalposition(Y),horizontalvelocity(Vx)andverticalvelocity(Vy))andtheaverageacrosskinematicparameters(Avgr).Topgroup:
correlationcoefficientsaregiven,foreachparameteranddataset,fortheworstandthebestofthefivecross-validationfolds.Bottomgroup:medianvaluesofcorrelationbetweentheactualanddecodedkinematicparameters,calculatedacrossallfivecross-validationfolds.Theseresultsdemonstratethatgoodreconstructionofkinematicparameters(ondatathatwerenotusedtotrainthealgorithm)ispossibleusingECoGsignalsinhumans.SubjectABCDEABCDE
X
Y
Vx
0.18–0.480.03–0.730.04–0.350.30–0.720.09–0.610.420.590.100.580.32
Vy
0.39–0.660.18–0.520.45–0.850.58–0.680.11–0.660.590.320.670.660.49
0.490.470.500.620.35Avgr
0.49–0.610.20–0.490.19–0.60−0.13–0.720.50–0.810.18–0.800.40–0.640.28–0.780.14–0.520.04–0.480.580.420.710.570.37
0.380.550.510.680.22
movementparametersusingintracorticalimplantsinnon-humanprimates.Thistableshowsthatthecorrelationoftheactualwiththedecodedtrajectories,andthusthefidelityofthedecoding,reportedinthepresentstudy,iswithintherangeofthoseachievedbeforeonlyusingimplantedmicroelectrodes.3.2.RelativeimportanceofanatomicalareasandeCoGfeatures
WealsostudiedtherelativeimportanceofthedifferentanatomicalareasandECoGfeatures(i.e.,thesevenfrequency-basedfeaturesandtheLMP)thatwereimplicatedinthedecodingofcursorpositionandvelocity.Todothis,weanalyzedthedataasdescribedbeforeexceptthatwefirstnormalizedthefeatureswithrespecttotheirstandarddeviations2.Thisallowedtheweightsthatwerederivedbythelinearregressionandassociatedwithparticularfeaturesandlocationstobeusedasameasureofimportanceindecodingacertainkinematicparameter.WethenusedtheCFSfeatureselectionprocedureandlinearregressiontoproduceweightsforspecificfeaturesatparticularlocationsforthebestfourcross-validationfoldsineachsubject,andforeachofthefourkinematicparameters.Wefinallyremovedthebiasduetothenumberofelectrodesbynormalizingeachsetofweightsbythesumofallweights.
Todeterminetherelativeimportanceofdifferentanatomicalareas,wethensimplyaccumulatedtheweightsforeachlocation(sothatoneelectrodecouldbeassignedmultipleweightsfromdifferentfoldsand/orfeatures)andplottedtheresultsona3Dmodelofthecortex.(SubjectsAandEhadelectrodegridsonthelefthemisphere.Weprojectedtheelectrodelocationsfromthesesubjectstothe
Wedidnotutilizethisnormalizationbeforebecausewewereinterestedinderivingresultsthatcouldhavebeenachievedinrealtime.Weherecalculatedthestandarddeviationonthewholedataset,whichcannotbeperformedinrealtime.
2
3.Results
Tostudythefidelityofthetrajectorydecodingandthecharacteristicsoftheassociatedbrainsignals,wedeterminedtheaccuracyofdecodedcursorpositionandvelocity,comparedittopublishedresultsusingimplantedmicroelectrodes,andestablishedtheanatomicallocationandECoGfeaturesthatheldthemostinformation.WealsodeterminedtheanatomicallocationandECoGfeaturesthatwerecosinetunedtomovementdirection.Theresultsoftheseevaluationsaredescribedbelow.
3.1.Accuratedecodingofkinematicparameters
Table2showstheprincipalresultsofthisstudy,whicharegivenincorrelationcoefficientscalculatedbetweenactualanddecodedkinematicparameters.ThegenerallyhighcorrelationcoefficientsdemonstratethatitispossibletoinferaccurateinformationaboutjoystickkinematicparametersinrealtimeusingECoGsignalsinhumans(seefigure3andthemovieinthesupplementarymaterialatstacks.iop.org/JNE/4/264foractualanddecodedtrajectories).Becausethecalculationofdecodingparametersonlyinvolvesthetrainingdataset,butnotthetestdataset,similarresultscanbeexpectedinonlineexperiments.
Table3comparestheresultsofthepresentstudytothosepreviouslyreportedfordecodingoftwo-dimensional
WeassessedthenormalityofthesemeasurementsusingaKolmogorov–Smirnofftest.Thistestdeterminedthat90%ofalldistributionswereconsideredGaussianatthe0.05level.
1
268
Decodingtwo-dimensionalmovementtrajectoriesusingelectrocorticographicsignalsinhumans
X CURSOR POSITIONY CURSOR POSITION20
40
61
81
0
(A)
r = 0.61r = 0.49
0
X CURSOR POSITION(B)
041
TIME(s)
83124166
Y CURSOR POSITIONr = 0.60
TIME(s)
20
r = 0.72
TIME(s)
406181
041
TIME(s)
83124166
X CURSOR POSITION(C)
Y CURSOR POSITION0
r = 0.81r = 0.80
06
X CURSOR POSITION012
X CURSOR POSITION030
TIME(s)
6090120
Y CURSOR POSITION(E)
r = 0.52
TIME(s)
253750
Y CURSOR POSITION(D)
r = 0.64
TIME(s)
1319266
TIME(s)
131926
r = 0.78
012
r = 0.48
TIME(s)
253750
030
TIME(s)
6090120
Figure3.Actualanddecodedmovementtrajectories.Thisfigureshowsexamplesforactual(thinredtraces)anddecoded(thickgreentraces)XandYcursorpositionforallsubjects(forthebestcross-validationfoldforeachofXandYcursorposition),aswellasthe
respectivecorrelationcoefficientsr.Thehighcorrelationcoefficientsevidencethegenerallycloseconcurrencebetweenactualanddecodedcursorpositions.
Table3.Comparisontointracorticalstudies.Wecomparedtheresultsofthepresentstudytopublishedresultsusingtwo-dimensionaltasksandmicroelectroderecordinginmonkeys.(Weincludedonlythosereportsthatdescribedmethodsthatcouldhavebeenachievedinrealtime.)Averagecorrelationcoefficientsforpublishedpositionand/orvelocityvalues(PositionrandVelocityr,respectively)acrossallsubjectsareshown.Thecorrelationoftheactualwiththedecodedtrajectories,andthusthefidelityofthedecoding,reportedinthepresentstudy,iswithintherangeofthoseachievedusingimplantedmicroelectrodesinmonkeys.
Studyandsource
SchwartzandMoran(1999,p2713)
Carmenaetal(2003,figures1(F)and3(C))Paninskietal(2004,table1)Lebedevetal(2005,table2)
Averbecketal(2005,est.fromfigures8(A)and(B))Presentstudy(2006,table2)
Positionr–
0.33–0.630.47––0.50
Velocityr0.77
0.27–0.73–0.560.740.48
righthemispheretofacilitateinterpretation.)Theseresultsareshowninfigure4,whichshowsthetopographicaldistributionofweights(colorcodedwithredcorrespondingtothehighestweight)accumulatedforallfeaturesandsubjects.Table4reportstheseweightsbrokendownbyBrodmann’sareaandECoGfeature.
Theseweightsaregenerallyhighformotorandpre-motorcorticalareas(Brodmann’sarea4and6,respectively),butalsoforadditionalareassuchasdorsolateralprefrontalcortex(whichhasbeenimplicatedinotherguidedmotortasks[42])andthosethatdonothaveobviousmotorcontrolrelevance(suchastheactivationatthetipofthetemporalpole).Thehighweightsreportedintable4fortheLMPalsoindicatetheimportantcontributionoftheLMPtoourresults.
Wedrawfourconclusionsfromtheseanalyses.First,thecortexoffersopportunitiestoinferkinematicparametersoverwidespreadareasofcortex,notonlyoverclassicalsensorimotorareas.Thisnotionisconsistentwitharecentreviewonthistopic[43].Second,sensorycortexhadonlyamodestinfluence,whichsuggeststhatmovementdecoding
269
GSchalketal
Figure4.Anatomicalareasholdinginformationaboutmovementparameters.Colorsrepresenttheweightsaccumulatedforallfeaturesandsubjectsattherespectivelocations,andthusindicatetherelativeimportanceofthesesitesindecodingcursorpositionorvelocity(transparentcolorandredcorrespondtozeroandmaximumweight,respectively).Theweightsarenormalizedforeachmovement
parameter.Thedominantfocusoverhandandproximalarmareasofmotorcortex,indicatedbythehighestweightsgiventotheseareas,isevident.Inaddition,otherlocationsareinvolvedforwhichtheanatomicalrelevanceisnotclear.Thetotalareacoveredbytheelectrodegridsinthefivesubjectsisindicatedbytheblueoutline.
Table4.RelativeimportanceofanatomicalareasandECoGfeatures.ThefourtablescontainweightsassignedtosignalsinparticularBrodmann’sareasandECoGfeaturesforcursorpositionandvelocity.Thetwomostimportantareasandfeaturesaregiveninbold.Motorandpre-motorcortices,aswellastheLMPfeature,heldthehighestweights,andthusthemostinformationaboutkinematicparameters.
Horizontalcursorposition
Area123467891020212237383940424344454647SUM
8–120.02
0.14
0.200.10
0.06
0.110.010.200.260.060.04
0.08
0.08
0.23
0.03
0.210.070.18
18–24
35–420.10
0.06
0.380.180.17
42–70
70–100
100–1400.060.630.510.46
140–1900.990.601.440.10
LMP0.400.190.991.050.671.710.110.320.420.740.660.29
0.070.04
0.080.05
0.18
1.23
0.45
1.55
0.94
0.211.01
2.06
3.50
0.06
0.020.130.02
0.390.520.799.25
SUM0.552.280.943.202.490.772.180.220.010.621.440.060.891.190.380.220.670.080.661.18
Area123467891020212237383940424344454647SUM
8–120.050.380.250.03
18–240.19
35–420.210.040.180.070.06
Verticalcursorposition42–700.030.080.510.12
0.05
0.40
0.050.12
70–1000.030.160.01
100–1400.040.53
140–190
LMP0.030.532.361.532.510.311.02
SUM0.061.124.161.852.970.360.471.650.180.350.690.061.290.011.030.100.340.190.111.401.63
0.230.03
0.33
0.130.290.06
0.050.180.08
0.04
0.57
0.19
0.06
0.14
0.060.180.050.10
0.01
0.050.180.13
0.050.090.18
0.10
0.170.080.090.311.020.010.570.16
0.11
0.190.04
0.190.05
0.15
0.130.04
0.130.11
0.05
0.07
0.031.301.34
0.48
1.27
0.47
13.12
0.040.111.55
0.080.75
0.070.101.22
1.14
Horizontalcursorvelocity
Area12346789101121223337383940424344454647SUM
8–120.200.15
0.3318–240.05
35–420.250.240.140.280.08
42–700.050.020.080.210.03
70–1000.130.07
100–140
140–190
LMP0.171.101.072.382.190.400.83
SUM0.231.761.892.772.990.310.481.250.140.610.59
Area12346789101121223337383940424344454647SUM
8–120.05
0.04
0.060.210.040.040.070.08
0.07
0.13
0.060.110.05
0.120.040.080.79
0.200.070.040.690.05
0.030.10
18–24
35–420.120.080.30
Verticalcursorvelocity42–700.080.120.42
70–1000.18
100–1400.540.060.070.25
140–1900.061.421.171.120.19
LMP0.310.080.011.331.910.561.060.130.780.470.510.11
0.06
0.07
0.04
0.04
0.670.960.190.380.500.120.670.2811.01
SUM0.542.381.702.593.100.030.601.250.190.780.620.750.110.060.931.380.230.550.500.350.850.53
0.340.03
0.340.09
0.07
0.070.14
0.25
0.12
0.310.040.06
0.11
0.070.090.190.38
0.060.05
0.090.23
0.04
0.11
0.100.20
0.09
0.241.130.81
0.07
0.01
0.08
0.08
0.05
0.88
0.47
0.041.22
0.88
0.54
0.80
0.170.091.20
1.881.2214.020.29
1.560.101.320.070.340.080.252.061.22
0.090.30
0.04
0.131.27
0.81
0.090.39
1.00
4.06
270
Decodingtwo-dimensionalmovementtrajectoriesusingelectrocorticographicsignalsinhumans
isprimarilyrelatedtotheexecutionofmovementandnottosensoryfeedback.Third,eyemovementslikelydidnotplayasubstantialroleinmovementdecodinginourparadigm.Fourth,theevidentanatomicalrelevancesuggeststhatoursignalsarenotanartifactbutratherreflectphysiologicaleventsrelatedtomovementcontrol.3.3.Directionaltuning
TheprevioussectiondescribedtheimportanceofparticularbrainareasandECoGfeaturesforthedecodingofcursorpositionandvelocityusingalinearmodel.Theseanalysesfocusedondecodingstrategiesthatcouldbeutilizedinrealtime,whichisimportantforpotentialbrain–computerinterfacingapplications.Studiesintheprimateliteraturehavealsoinvestigatedtherelationshipofsignalfeatureswiththemovementdirection(i.e.,theangleofthemovement).Thesestudies(e.g.,[24])haveshownthatsignalfeatures(i.e.,firingratesofparticularneurons)thatarederivedfromelectrodesimplantedwithinthebraincanbetuned,i.e.,areafunctionofmovementdirection,orevencosinetuned,i.e.,areacosinefunctionofmovementdirection.
TostudythispossibilityforourECoGfeatures,weinvestigatedtheeffectofmovementdirectiononfeatureamplitudeusinganapproachsimilartothatemployedin[21].Inshort,wecalculatedtheamplitudesoftheeightfeaturesasafunctionofmovementdirection(i.e.,theangleofthemovementmeasuredin−180to+180◦).Thisproducedonetuningcurveforeachsubject,cross-validationfold,electrodelocationandfeature.Asdescribedinsection2,wethenderivedtheprobabilitiesthattheresultingtuningcurvesweretuned(pt)andcosinetuned(pct).Weselectedthosetuningcurvesfromthebestfourcross-validationfoldsthatweretunedatpt<0.001andcosinetunedatpct<0.001andderivedfromeachofthemanindexofcosinetuning(ict=−logpreviousanalysis,inwhichweusedtheCFS10(pct)).Asinthefeatureselectorandlinearregression,thepresentanalysisderivedmeasures(i.e.,cosinetuningindicesict)forparticularfeaturesatparticularlocations,cross-validationfoldsandsubject.Wethenaccumulatedthesecosinetuningmeasuresacrosscross-validationfoldsandsubjectsandagainprojectedtheelectrodelocationsforsubjectsAandEontotherighthemisphere.
Theresultsoftheseanalysesareshowninfigure5.Thisfigureshowsthecosinetuningindices,accumulatedforallsubjectsandfeatures(figure5(A))andforallsubjectsandeachfeature(figure5(B)).Theseaccumulatedcosinetuningindicesarecolorcoded(seecolorbars).Itisalsoshowninfigure5(C)threeexampleLMPtuningcurvesforthreesubjectsandforlocationsmarkedintheLMPinfigure5(B).ThehighvaluesofthecosinetuningindicesoverprimarilydifferentmotorcorticalareasandfortheLMP(thescaleoftheLMPinfigure5(B)isfrom0to20)againvalidatethedominantroleoftheselocationsandthisECoGfeature,respectively.Furthermore,thetopographiesofthetuningindicesshowsubstantialcorrelationforthedifferentfrequencyfeaturesbutaremarkedlydifferentfortheLMP.ThetuningindextopographyfortheLMPismorediffuse,butagainpeaksoverhandareaofmotorcortex.
4.Discussion
Inthisstudy,weshowedthatECoGsignalscanbeusedtoaccuratelydecodetwo-dimensionaljoysticktrajectoriesinhumans.Wealsocharacterizedanewbrainsignal,thelocalmotorpotential(LMP),thatholdssubstantialinformationaboutkinematicparameters.Furthermore,wedemonstratedthatECoGfeaturescanexhibitthesamekindofcosinetuningthathasbeenpreviouslydescribedforneuronalfiringratesandlocalfieldpotentials(LFPs)recordedusingintracorticalmicroelectrodes[21,44].TheseresultsindicatethatECoGprovidesinformationthatgreatlyexceedsinspecificitythatprovidedbyEEGandisinimportantrespectscomparabletothatprovidedbymicroelectrodesimplantedincortex.ThisstudyfurtherimpliesthatECoGhascharacteristicsthatmakeitattractivenotonlyforBCIresearch,butalsoforbasicneuroscienceinvestigationsofbrainfunction.4.1.Thelocalmotorpotential
ThesuccessfuldecodingofjoystickmovementachievedinthisstudydependedinlargepartontheLMPcomponent.Becausenopreviousreporthas,toourknowledge,describedtherelationshipofthisnewbrainsignalfeaturetokinematicparameters,wewereconcernedthatitmightbeartifactual.Ourresultsstronglyindicatethatthisisnotthecase.First,theinitialstepinanalysiswastheapplicationofacommonaveragereferencefilter.Thisfilter,whichimprovedperformancecomparedtowhenitwasnotapplied,removessignalswithlowspatialfrequenciessuchasthosethatwouldbeexpectedforanartifactcreatedbywiremovementorsomeotherexternalinfluence.Furthermore,analysesshowedthattheLMPwasmostoftenlocatedoveranatomicallyrelevantareas,andthatitcouldexhibitcosinetuningsimilartothatdescribedforsignalsrecordedbyintracorticalmicroelectrodes.
ItissurprisingthattheLMPhasapparentlynotbeenpreviouslydescribedinintracorticalorscalprecordings.ItispossiblethattheLMPcannotbedetectedonthescalp.Moreover,inourparadigmkinematicparameterschangedrelativelyslowly(i.e.,onefullcirclein6.3s=0.16Hz),whereasintracorticalstudiesinmonkeysoftenutilizedhigherspeeds(i.e.,around1–2Hz).Inthelattercases,associatedLMPcomponentscouldhavebeenmaskedbyotheractivity.Alternatively,theLMPcouldbeacontinuouscorrelatetoevokedLFPchangesthathavebeendescribedforothertasks,suchascenter-out[45]andreachingtasks[46].Finally,itispossiblethatinpreviousstudiestheLMPcomponentwasfilteredoutattheamplificationorpost-processingstage.Indeed,whenwere-analyzeddatafromourpreviousstudy[18]withoutapplyingahigh-passfilter3,wefoundthatLMPamplitudeinoneparticularlocationwasmodulatedbythedirectionofjoystickmovement,andLMPamplitudeinoneimmediatelyadjacentlocationwasmodulatedbyhandopening/closingandrest.Theselocationscloselymatchedthosethatshowedmodulationofthespectralamplitudeat
3
Inthepreviousstudy,wehadanalyzedsignalsfrom0to200Hz.However,wehadsubtractedthemeanfromeach280mswindowpriortoanalysis,whichactedasahigh-passfilter.
271
GSchalketal
(A)
(B)
(C)
Figure5.Cosinetuning.Thisfigureshowsthespatialdistributionofthecosinetuningindex,accumulatedforallsubjectsandfeatures(A),andforallsubjectsandeachfeature(B).Thecosinetuningindexiscolorcoded(seecolorbars).ThescaleoftheLMPfigurein(B)isfrom0to20.Thetuningcurvesin(C)arecalculatedfortheLMPatthelocationsmarkedintheLMPfigurein(B).
18Hz(i.e.,atraditionalfrequency-basedfeatureinthebetaband).Seethesupplementarymaterialsatstacks.iop.org/JNE/4/264fordetails.
Atthispoint,thephysiologicaloriginoftheLMPcomponentisamatterofspeculation.Itispossiblethatitreflectsfiringratemodulationofneuronslocatedimmediatelyunderneaththeelectrode.Inthiscase,theLMPmayberelatedtothedirectionally-specificratemodulationsobservedinsingle-unitstudiesusingcenter-outortrackingtasks272
[21,47–54].WhatcomplicatesthisinterpretationisthefactthatthetuningtopographiesfortheLMPandfrequency-basedfeaturesareclearlydifferent(seefigure5(B)),whichsuggestsdifferingoriginatingprocesses.Furthermore,itmaybedifficulttotheoreticallymodeltherelationshipbetweensingle-unitactivityandECoGactivityasresultingECoGactivitycouldbedominatedbythedegreeofsynchronousactivityofunderlyingcellsratherthansimplybythemagnitudeofcellactivity.Hence,determinationoftherelationship
Decodingtwo-dimensionalmovementtrajectoriesusingelectrocorticographicsignalsinhumans
betweenthesesourcesofbrainsignalactivitywilllikelyrequiresimultaneousrecordingsofsingle-unitandECoGactivity(e.g.,[55]),oratleastofsingle-unitandlocalfieldpotentialactivity(e.g.,[20,56,57]).4.2.Relevanceforbrain–computerinterfaces
Togetherwithresultsfrompreviousstudiesinmonkeys,thepresentresultssuggestthatECoG-basedBCIusecouldbemoreintuitive,i.e.,subjectscouldusemovement-relatedimageryratherthanimageryofarbitrarytasksformultidimensionalBCIcontrol.Thus,BCItrainingtimemightbereducedbyusingECoGandmovement-relatedimagery.Atthesametime,itiscurrentlynotclearwhatfactorsgoverntheneedforBCItrainingtime.Itispossiblethatthephysiologicalnatureofthebrainsignalisimportant.Inatypicalmu-orbeta-rhythmEEG-basedBCI,brainsignalsassociatedwithimaginedlimbmovementsarefirstidentified.Thesesignalsarethenusedtoprovideone-ortwo-dimensionalcontrol.Whiletheoriginsofthesescalp-recordedrhythmsarenotentirelyclear[58,59],theyarenotbelievedtobestronglycorrelatedwithmovementdirection.Thus,theirusefordirectionalmovementcontrolmightrequireconsiderableplasticityandusertraining.Incontrast,BCIsystemsusingimplantedmicroelectrodesmayrequirelessusertraining.Thesesystemstypicallyutilizesingle-unitactionpotentialsorlocalfieldpotentials(LFPs)derivedfromneuronsinmotorcortex.Neuronsarethenidentifiedthathavefiringrates/LPFsrelatedtoparametersofhandmovements[24,52,53,60–69].Theyarethencombinedtoproducemultidimensionalcontrolsignals.Whenmonkeysareprovidedfeedbackbasedonbrainsignalsratherthanactualhandmovements,theyinitiallycontinuetomovethehandbutthenlearntoproducethesamesignalswithouttheactualphysicalmovements[4].Itislikelythatthetransformationofbrainsignalsthattypicallyencodemovementdirectionintodirectionalnon-muscularcommandsdemandslesscorticalreorganizationandusertrainingthanthetransformationofbrainsignalsthatdonotnormallyencodedirection,suchasscalp-recordedmuandbetarhythms.Thus,theresultsofthepresentstudy,whichshowthatkinematicparameterscanbedecodedfromECoGsignals,suggestthatthepotentialtraining-timeadvantageofimplantedmicroelectroderecordingscouldalsobeachievedusingECoG.
ForclinicalapplicationsofBCItechnology,chronicimplantsofECoGelectrodeswouldberequired.Theliteraturesuggeststhatsubdural/epiduralelectrodesexhibitgoodlong-termstability[13–17].Inaddition,thereareseveraltheoreticalreasonswhyECoGelectrodeswillprobablynotbeaffectedbythesubstantialstabilityproblemsassociatedwithimplantedmicroelectrodes.TheareacoveredbyeachECoGelectrodeismuchlarger,andthusitsimpedancemuchlower,thanisthecaseforamicroelectrode.Moreover,sinceECoGelectrodesdonotpenetratecortex,thereactiveresponsesofthebraintypicalwithmicroelectrodesshouldbesubstantiallyreduced.Evenifscartissueweretoformunderneaththeelectrodes,theelectrodes’lowimpedanceshouldenableeffectivelongtermrecordings.Furthermore,
ECoGrecordingsrequireadramaticallylowerbandwidth(i.e.,500Hzsampling,andmuchlessifonlytheLMPisextracted)thansingle-neuronrecordingsusingmicroelectrodes(i.e.,10–50kHz).Theselowertechnicalneedstranslatetosubstantiallydecreasedprocessingandpowerrequirements.Lowerpowerrequirementsmeanlessheatdissipationandlongerbatterylife.Thesesubstantialtechnicaladvantageswillfacilitatethedesignofelectrode/telemittersystemsthatcouldbechronicallyimplantedandwouldnotrequireanypercutaneousconnection.Thiswouldgreatlyreducethelong-termriskofinfection.
Ourresultsdidnotdependonthecirculartrajectoryofthetargetandwerespecifictothejoystickmovements.Trackingperformance(i.e.,howwellthesubjectstrackedthetarget)wasmodest(r=0.56,r=0.57,r=0.50,r=0.50calculated,foreachofthekinematicparameters,betweenthecursorandthetarget,respectively)andnotpredictiveofdecodingperformance(p=0.84,p=0.88,p=0.62,p=0.91forthefourkinematicparameters,respectively).Thisisinconsistentwiththehypothesisthatdecodingperformanceisdependentonhowwellthesubjectstrackedthecirculartrajectoryofthetarget.Insummary,ourresultsdidnotdependonthecirculartrajectoryofthetargetandtherewassomedegreeofindependencebetweenthekinematicparameters.Atthesametime,thecurrentparadigmwassimplynotdesignedtoindependentlyexamineallfourkinematicparameters.Inconsequence,futurestudiescouldexpandonourinitialresultsandutilizedifferentmovementpatterns,directionsandspeeds,todeterminehowtheresultsinhumansusingECoGrelatetothebodyofknowledgethathasbeenestablishedforsignalsrecordedfromintracorticalmicroelectrodes.4.3.Currentexperimentallimitations
ThepresentresultsstronglyencouragefurtherinvestigationsusingECoG.Atthesametime,therewillultimatelybelimitstowhatcanbeachievedusingthecurrentlyusedpatientpopulation.Ourstudy,likepracticallyallhumanECoGstudiestodate,reliedonelectrodegridsimplantedforclinicalreasons.Thus,thegridsoftendonotcoverlocationsmostappropriateforourpurposeand,inaddition,aredifferentforeachpatient.Furthermore,thephysicalandcognitiveconditionandlevelofcooperationofeachpatientareimpairedand/orvariable.Finally,thepatients’posturecanbecontrolledformostlyonlyusinginstructions.Thisrelativelyuncontrolledexperimentalsituationisincontrasttothetypicallyrigorouslycontrolledanimalstudies.
Despitetheseissues,thepresentresults,inwhichweutilizedallavailabledataforeachsubject,comparefavorablytoresultsthathavebeenachievedinhighlycontrolledanimalstudies.Atthesametime,thepresentsituationsimplydoesnotpermitsystematicstudiesusingcontrolledexperiments,whichwillultimatelylimittheinformationthatcanbederived.Weexpectthatthepresentresults,andtheresultsofthestudiesthatwillfollow,willprovideampleevidenceoftheutilityoftheECoGplatformtosupportFDAapprovalofsubduralorepiduralimplantsinhumansforBCIpurposes.
273
GSchalketal
Acknowledgments
WethankDrElizabethWinterWolpawforhelpfulcommentsonthemanuscript.WealsothankDrsHolmesandMillerforpatientcareandtelemetrysupport.WefurtheracknowledgetheassistanceofDrsAshley,DowlingandEisenmaninthedepartmentofNeurologicalSurgery,BarnesJewishHospital,StLouis,inexperimentsleadinguptothepresentstudy.Finally,wearegratefulforthecommentsbytheanonymousreviewers,whichhelpedtogreatlyimprovethispaper.ThisworkwassupportedinpartbygrantsfromNIH(EB006356(GS),NS41272(JO),HD30146(JRW)andEB00856(JRW)),theMcDonnellCenterforHigherBrainFunction(JO)andtheJamesSMcDonnellFoundation(ECLandJRW).
References
[1]WolpawJR,BirbaumerN,McFarlandDJ,PfurtschellerG
andVaughanTM2002Brain–computerinterfacesforcommunicationandcontrolElectroenceph.Clin.Neurophysiol.113767–91
[2]WolpawJRandMcFarlandDJ2004Controlofa
two-dimensionalmovementsignalbyanoninvasive
brain–computerinterfaceinhumansProc.NatlAcad.Sci.USA10117849–54
[3]GeorgopoulosAP,SchwartzABandKettnerRE1986
NeuronalpopulationcodingofmovementdirectionScience2331416–9
[4]TaylorDM,TillerySIandSchwartzAB2002Directcortical
controlof3DneuroprostheticdevicesScience2961829–32[5]SerruyaMD,HatsopoulosNG,PaninskiL,FellowsMRand
DonoghueJP2002InstantneuralcontrolofamovementsignalNature416141–2
[6]LebedevMA,CarmenaJM,O’DohertyJE,
ZacksenhouseM,HenriquezCS,PrincipeJCandNicolelisMA2005Corticalensembleadaptationtorepresentvelocityofanartificialactuatorcontrolledbyabrain–machineinterfaceJ.Neurosci.254681–93[7]ShainW,SpataroL,DilgenJ,HaverstickK,RettererS,
IsaacsonM,SatzmanandTurnerJN2003ControllingcellularreactiveresponsesaroundneuralprostheticdevicesusingperipheralandlocalinterventionstrategiesIEEETrans.NeuralSyst.Rehabil.Eng.11186–8
[8]DonoghueJP,NurmikkoA,FriehsGandBlackM2004
DevelopmentofneuromotorprosthesesforhumansSuppl.Clin.Neurophysiol.57592–606[9]K¨ublerA,NijboerF,MellingerJ,VaughanTM,PawelzikH,
SchalkG,McFarlandDJ,BirbaumerNandWolpawJR2005Patientswithalscanusesensorimotorrhythmstooperateabrain–computerinterfaceNeurology641775–7
[10]HochbergLR,SerruyaMD,FriehsGM,MukandJA,
SalehM,CaplanAH,BrannerA,ChenD,PennRDandDonoghueJP2006NeuronalensemblecontrolofprostheticdevicesbyahumanwithtetraplegiaNature442164–71
[11]StabaRJ,WilsonCL,BraginA,FriedIandEngelJ2002
Quantitativeanalysisofhigh-frequencyoscillations
(80–500Hz)recordedinhumanepileptichippocampusandentorhinalcortexJ.Neurophysiol.881743–52
[12]FreemanWJ,HolmesMD,BurkeBCandVanhataloS2003
SpatialspectraofscalpEEGandEMGfromawakehumansClin.Neurophysiol.1141053–68
[13]LoebGE,WalkerAE,UematsuSandKonigsmarkBW1977
HistologicalreactiontovariousconductiveanddielectricfilmschronicallyimplantedinthesubduralspaceJ.Biomed.Mater.Res.11195–210
274
[14]BullaraLA,AgnewWF,YuenTG,JacquesSand
PudenzRH1979EvaluationofelectrodearraymaterialforneuralprosthesesNeurosurgery5681–6
[15]YuenTG,AgnewWFandBullaraLA1987Tissueresponse
topotentialneuroprostheticmaterialsimplantedsubdurallyBiomaterials8138–41
[16]PilcherWHandRusyniakWG1993Complicationsof
epilepsysurgeryNeurosurg.Clin.N.Am.4311–25
[17]MargalitEetal2003Visualandelectricalevokedresponse
recordedfromsubduralelectrodesimplantedabovethevisualcortexinnormaldogsundertwomethodsofanesthesiaJ.Neurosci.Methods123129–37
[18]LeuthardtEC,SchalkG,WolpawJR,OjemannJGand
MoranDW2004Abrain–computerinterfaceusingelectrocorticographicsignalsinhumansJ.Neural.Eng.163–71
[19]MehringC,RickertJ,VaadiaE,CardosadeOliveiraS,
AertsenAandRotterS2003InferenceofhandmovementsfromlocalfieldpotentialsinmonkeymotorcortexNat.Neurosci.61253–4
[20]AndersenRA,MusallamSandPesaranB2004Selectingthe
signalsforabrain–machineinterfaceCurr.Opin.Neurobiol.14720–6
[21]RickertJ,OliveiraSC,VaadiaE,AertsenA,RotterSand
MehringC2005EncodingofmovementdirectionindifferentfrequencyrangesofmotorcorticallocalfieldpotentialsJ.Neurosci.258815–24
[22]ToroC,CoxC,FriehsG,OjakangasC,MaxwellR,GatesJR,
GumnitRJandEbnerTJ19948–12Hzrhythmic
oscillationsinhumanmotorcortexduringtwo-dimensionalarmmovements:evidenceforrepresentationofkinematicparametersElectroencephalogr.Clin.Neurophysiol.93390–403
[23]GeorgopoulosAP,LangheimFJ,LeutholdACandMerkle
AN2005MagnetoencephalographicsignalspredictmovementtrajectoryinspaceExp.BrainRes.167132–5
[24]GeorgopoulosAPandMasseyJT1988Cognitive
spatial-motorprocesses:2.Informationtransmittedbythedirectionoftwo-dimensionalarmmovementsandbyneuronalpopulationsinprimatemotorcortexandarea5Exp.BrainRes.69315–26
[25]SalinasEandAbbottLF1994Vectorreconstructionfrom
firingratesJ.Comput.Neurosci.189–107
[26]TurnerRS,OwensJWJrandAndersonME1995Directional
variationofspatialandtemporalcharacteristicsoflimbmovementsmadebymonkeysinatwo-dimensionalworkspaceJ.Neurophysiol.74684–97
[27]KettnerRE,MarcarioJKandClark-PhelpsMC1996
Controlofrememberedreachingsequencesinmonkey:I.ActivityduringmovementinmotorandpremotorcortexExp.BrainRes.112335–46
[28]AmirikianBandGeorgopoulosAP2000Directionaltuning
profilesofmotorcorticalcellsNeurosci.Res.3673–9
[29]BaraducPandGuigonE2002Populationcomputationof
vectorialtransformationsNeural.Comput.14845–71
[30]TodorovE2002CosinetuningminimizesmotorerrorsNeural.
Comput.141233–60
[31]ShohamS,PaninskiLM,FellowsMR,HatsopoulosNG,
NormannRAandDonoghueJP2005Statisticalencodingmodelforaprimarymotorcorticalbrain–machineinterfaceIEEETrans.Biomed.Eng.521312–22
[32]NozakiD,NakazawaKandAkaiM2005Muscleactivity
determinedbycosinetuningwithanontrivialpreferreddirectionduringisometricforceexertionbylowerlimbJ.Neurophysiol.932614–24
[33]KalaskaJFandHydeML1985Area4andarea5:
differencesbetweentheloaddirection-dependentdischargevariabilityofcellsduringactiveposturalfixationExp.BrainRes.59197–202
Decodingtwo-dimensionalmovementtrajectoriesusingelectrocorticographicsignalsinhumans
[34]TairaM,BolineJ,SmyrnisN,GeorgopoulosAPandAsheJ
1996Ontherelationsbetweensinglecellactivityinthemotorcortexandthedirectionandmagnitudeof
three-dimensionalstaticisometricforceExp.BrainRes.109367–76
[35]SergioLE,Hamel-PˆaquetCandKalaskaJF2005Motor
cortexneuralcorrelatesofoutputkinematicsandkineticsduringisometric-forceandarm-reachingtasksJ.Neurophysiol.942353–78
[36]SchalkG,McFarlandDJ,HinterbergerT,BirbaumerNand
WolpawJR2004BCI2000:ageneral-purpose
brain–computerinterface(BCI)systemIEEETrans.Biomed.Eng.511034–43
[37]MillerKJ,MakeigS,HebbAO,RaoRP,DennijsMand
OjemannJG2007Corticalelectrodelocalizationfromx-raysandsimplemappingforelectrocorticographicresearch:the‘locationoncortex’(LOC)packageforMATLABJ.Neurosci.Methods162303–8
[38]FoxPT,PerlmutterJSandRaichleME1985A
stereotacticmethodofanatomicallocalizationforpositronemissiontomographyJ.Comput.Assist.Tomogr.9141–53
[39]TalairachJandTournouxP1988Co-PlanarSterotaxic
AtlasoftheHumanBrain(NewYork:ThiemeMedicalPublishers)
[40]LawrenceMarpleS1987DigitalSpectralAnalysis:With
Applications(EnglewoodCliffs,NJ:Prentice-Hall)
[41]WittenIHandFrankEibe2005DataMining:Practical
MachineLearningToolsandTechniques2ndedn(SanFrancisco,CA:MorganKaufmann)
[42]VaillancourtDE,ThulbornKRandCorcosDM2003Neural
basisfortheprocessesthatunderlievisuallyguidedandinternallyguidedforcecontrolinhumansJ.Neurophysiol.903330–40
[43]DavidsonPRandWolpertDM2005Widespreadaccessto
predictivemodelsinthemotorsystem:ashortreviewJ.Neural.Eng.2S313–9
[44]HeldmanDA,WangW,ChanSSandMoranDW2006
LocalfieldpotentialspectraltuninginmotorcortexduringreachingIEEETrans.Neural.Syst.Rehabil.Eng.14180–3
[45]DonchinO,GribovaA,SteinbergO,BergmanH,
CardosodeOliveiraSandVaadiaE2001LocalfieldpotentialsrelatedtobimanualmovementsintheprimaryandsupplementarymotorcorticesExp.BrainRes.14046–55
[46]O’LearyJGandHatsopoulosNG2006Earlyvisuomotor
representationsrevealedfromevokedlocalfieldpotentialsinmotorandpremotorcorticalareasJ.Neurophysiol.961492–506
[47]DonoghueJP,SanesJN,HatsopoulosNGandGaalG1998
NeuraldischargeandlocalfieldpotentialoscillationsinprimatemotorcortexduringvoluntarymovementsJ.Neurophysiol.79159–73
[48]HatsopoulosNG,OjakangasCL,PaninskiLand
DonoghueJP1998InformationaboutmovementdirectionobtainedfromsynchronousactivityofmotorcorticalneuronsProc.NatlAcad.Sci.USA9515706–11
[49]MaynardEM,HatsopoulosNG,OjakangasCL,AcunaBD,
SanesJN,NormannRAandDonoghueJP1999NeuronalinteractionsimprovecorticalpopulationcodingofmovementdirectionJ.Neurosci.198083–93
[50]DonchinO,GribovaA,SteinbergO,MitzAR,BergmanH
andVaadiaE2002Single-unitactivityrelatedtobimanual
armmovementsintheprimaryandsupplementarymotorcorticesJ.Neurophysiol.883498–517
[51]
SteinbergO,DonchinO,GribovaA,CardosadeOliveiraS,BergmanHandVaadiaE2002NeuronalpopulationsinprimarymotorcortexencodebimanualarmmovementsEur.J.Neurosci.151371–80
[52]RokniU,SteinbergO,VaadiaEandSompolinskyH2003CorticalrepresentationofbimanualmovementsJ.Neurosci.2311577–86
[53]PaninskiL,FellowsMR,HatsopoulosNGandDonoghueJP2004SpatiotemporaltuningofmotorcorticalneuronsforhandpositionandvelocityJ.Neurophysiol.91515–32[54]HatsopoulosN,JoshiJandO’LearyJG2004DecodingcontinuousanddiscretemotorbehaviorsusingmotorandpremotorcorticalensemblesJ.Neurophysiol.921165–74[55]
JonesMS,MacDonaldKD,ChoiB,DudekFEand
BarthDS2000Intracellularcorrelatesoffast(200Hz)electricaloscillationsinratsomatosensorycortexJ.Neurophysiol.841505–18
[56]
PesaranB,PezarisJS,SahaniM,MitraPPandAndersenRA2002Temporalstructureinneuronalactivityduring
workingmemoryinmacaqueparietalcortexNat.Neurosci.5805–11
[57]JacobsJoshua,KahanaMJ,EkstromADandFriedI2007Brainoscillationscontroltimingofsingle-neuronactivityinhumansJ.Neurosci.273839–44
[58]LopesdaSilvaFH1991Neuralmechanismsunderlyingbrainwaves:fromneuralmembranestonetworksElectroenceph.Clin.Neurophysiol.7981–93
[59]NiedermeyerE2004TheNormalEEGoftheWakingAdult5thedn(Baltimore,MD:WilliamsandWilkins)pp167–92[60]SchwartzABandMoranDW1999Motorcorticalactivityduringdrawingmovements:populationrepresentationduringlemniscatetracingJ.Neurophysiol.822705–18[61]MoranDWandSchwartzAB1999Motorcorticalactivityduringdrawingmovements:populationrepresentationduringspiraltracingJ.Neurophysiol.822693–704[62]MoranDWandSchwartzAB1999MotorcorticalrepresentationofspeedanddirectionduringreachingJ.Neurophysiol.822676–92
[63]MoranDWandSchwartzAB2000Onemotorcortex,twodifferentviewsNat.Neurosci.3963–5
[64]
WessbergJ,StambaughCR,KralikJD,BeckPD,
LaubachM,ChapinJK,KimJ,BiggsSJ,SrinivasanMAandNicolelisMA2000Real-timepredictionofhandtrajectorybyensemblesofcorticalneuronsinprimatesNature408361–5
[65]SchwartzAB,TaylorDMandTillerySI2001ExtractionalgorithmsforcorticalcontrolofarmprostheticsCurr.Opin.Neurobiol.11701–7
[66]
ReinaGA,MoranDWandSchwartzAB2001OntherelationshipbetweenjointangularvelocityandmotorcorticaldischargeduringreachingJ.Neurophysiol.852576–89
[67]
MerchantH,Battaglia-MayerAandGeorgopoulosAP2004Neuralresponsesduringinterceptionofrealandapparentcircularlymovingstimuliinmotorcortexandarea7aCereb.Cortex14314–31
[68]SchwartzAB,MoranDWandReinaGA2004DifferentialrepresentationofperceptionandactioninthefrontalcortexScience303380–3
[69]
AverbeckBB,ChafeeMV,CroweDAand
GeorgopoulosAP2005ParietalrepresentationofhandvelocityinacopytaskJ.Neurophysiol.93508–18
275
因篇幅问题不能全部显示,请点此查看更多更全内容