难度 中等
(发音类似 "try")或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。
请你实现 Trie 类:
Trie()
初始化前缀树对象。void insert(String word)
向前缀树中插入字符串 word
。boolean search(String word)
如果字符串 word
在前缀树中,返回 true
(即,在检索之前已经插入);否则,返回 false
。boolean startsWith(String prefix)
如果之前已经插入的字符串 word
的前缀之一为 prefix
,返回 true
;否则,返回 false
。示例:
输入 ["Trie", "insert", "search", "search", "startsWith", "insert", "search"] [[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]] 输出 [null, null, true, false, true, null, true] 解释 Trie trie = new Trie(); trie.insert("apple"); trie.search("apple"); // 返回 True trie.search("app"); // 返回 False trie.startsWith("app"); // 返回 True trie.insert("app"); trie.search("app"); // 返回 True
提示:
1 <= word.length, prefix.length <= 2000
word
和 prefix
仅由小写英文字母组成insert
、search
和 startsWith
调用次数 总计 不超过 3 * 104
次面试中遇到过这道题?
1/5
是
否
通过次数
326.7K
提交次数
4K
通过率
72.0%
class Trie {
public:
Trie() {
}
void insert(string word) {
}
bool search(string word) {
}
bool startsWith(string prefix) {
}
};
/**
* Your Trie object will be instantiated and called as such:
* Trie* obj = new Trie();
* obj->insert(word);
* bool param_2 = obj->search(word);
* bool param_3 = obj->startsWith(prefix);
*/
首先很多人还不知道前缀树。
简单说来就是,根节点不存放数据,其它节点每个节点存放一个字母。从根节点到某个节点形成的路径就是一个单词。每一个非根节点会有个标记,记录以该节点为尾的路径是不是一个单词。
int n=word.length();
Node* cur=root;
int i=0;
while( i<n&&(cur->child).find(word[i])!=(cur->child).end() ){
cur=(cur->child)[word[i]];
i++;
}
添加和查找时间复杂度,: O(m)O(m)O(m)
其中m为word的长度
查找前缀的时间复杂度: O(p)O(p)O(p)
p为前缀的长度
空间复杂度:
空间复杂度为单词的总长度: O(numberofwords∗averagewordlength)
class Trie {
public:
struct Node{
bool flag=false; //结束标志,true代表是结束
char letter; //该节点代表的字母
unordered_map<char,Node*> child;
string val; //根走到当前节点的值
Node() {};
Node(char c) : letter(c) {};
};
Node* root;
Trie() {
root=new Node('#');
}
void insert(string word) {
int n=word.length();
Node* cur=root;
int i=0;
while( i<n&&(cur->child).find(word[i])!=(cur->child).end() ){
cur=(cur->child)[word[i]];
i++;
}
//word已经存在的情况
if(i==n&&(cur->flag)==true){
return;
}else if(i==n&&(cur->flag)==false){
//word在前缀树中但是不存在的情况
cur->flag=true;
}else if(i!=n){
while(i<n){
(cur->child)[word[i]]=new Node(word[i]);
cur=(cur->child)[word[i]];
i++;
}
(cur->flag)=true;//标志结束
}
//
}
bool search(string word) {
int n=word.length();
int i=0; //word中最后一个匹配成功的后一个位置
Node* cur=root; //前缀树中匹配成功的最后一个位置
while( i<n&&(cur->child).find(word[i])!=(cur->child).end() ){
cur=(cur->child)[word[i]];
i++;
}
if(i==n&&(cur->flag)==true ) return true;
else return false;
}
bool startsWith(string prefix) {
int n=prefix.length();
int i=0;
Node* cur=root;
while( i<n&&(cur->child).find(prefix[i])!=(cur->child).end() ){
cur=(cur->child)[prefix[i]];
i++;
}
if( i==n&&(cur->flag==true||(cur->child).size()!=0) ) return true;
else return false;
}
};
/**
* Your Trie object will be instantiated and called as such:
* Trie* obj = new Trie();
* obj->insert(word);
* bool param_2 = obj->search(word);
* bool param_3 = obj->startsWith(prefix);
*/
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- bangwoyixia.com 版权所有 湘ICP备2023022004号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务